The impact of IT on climate change is growing rapidly. We aim to develop a data model to support the evaluation of the carbon footprint of digital services, along with a visualization tool to inform users. Besides, we intend to propose new services to reduce carbon emissions when computing workload, adapting the moment, the location or the volume of processing.

RQ1
How can we evaluate carbon emissions of digital services?

- Collect data on energy-related metrics
- Forecast usage and metrics
- Provide a data model to be used for relevant deployment techniques

RQ2
How can we apply shifting techniques to reduce carbon emissions?

- Bring instances or data closer to the computer
- Combine efficiency and sufficiency to anticipate the rebound effect
- Adapt the deployment of services to the renewable energies available

RQ3
How can we communicate info about the carbon footprint of digital services and involve people?

- Provide feedback to the user using understandable metrics
- Explain what needs to be done to reduce the user’s impact
- Involve the user by giving him/her the opportunity to deploy a service differently

CONCLUSION
Carbon emissions from the ICT sector are a major issue to address. Our proposal is for all stakeholders in the ICT sector to adopt a net-zero target and implement a strategy to decrease emissions annually. To achieve this, we are developing a tool to evaluate the carbon footprint of digital services and to recommend additional methods to face this issue.

ACKNOWLEDGMENTS
This publication is part of the project PID2020-113037RB-I00 (NEAT-AMBIENCE), funded by MICIU/AEI/10.13039/501100011033. We also thank the support of the Departamento de Ciencia, Universidad y Sociedad del Conocimiento del Gobierno de Aragón (Government of Aragon: Group Reference T64_23R. COSMOS research group).