First steps to define the granulosa cell isolation protocol from human follicular fluid

Marta Gargallo1, Ángel Luis García-Otín2, Javier Godino3, Clara Malo1,4

1 Tissue Microenvironment (TME) Lab, Instituto de Investigación Sanitaria (IIS) Aragón, 50009 Zaragoza, Spain. e-mail: mgargallo@iisaragon.es
2 Instituto Aragonés de Ciencias de la Salud (IACS) e Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain. e-mail: algarcia.iacs@aragon.es
3 Departamento de Citometría y Separación Celular, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain. e-mail: jgodino.iacs@aragon.es
4 Instituto de Investigación en Ingeniería de Aragón (I3A) Universidad de Zaragoza, 50018 Zaragoza, Spain. e-mail: claramalo@unizar.es

Introduction

Infertility affects about 48.5 million couples globally, as reported by WHO [1]. In some women, the low fertility rate is due to a high number of immature eggs in ovarian follicles, which do not mature sufficiently for fertilization. In vitro maturation (IVM) of eggs is a promising solution. Understanding follicular cells like granulosa, cumulus, and endothelial cells is crucial for improving this process. Granulosa cells play a vital role by providing support, growth signals, and hormonal signals to the egg during its development, especially through follicle-stimulating hormone (FSH) receptors. Activation of FSH receptors on granulosa cells triggers biochemical events necessary for follicle development and estrogen production [2-4].

Objectives

Establish an efficient system for isolating granulosa cells in follicular fluid.

Specific objectives:
- Reduce the number of red blood cells present in the follicular fluid.
- Determine the percentage of presumptive granulosa cells (FSH-positive cells) in the follicular fluid.
- Assess the effect of the transport method (4 hours at 37°C vs. 1 hour at 5°C) on cell viability.

Methodology

Cytometry results show that the 1h transport method at 5°C maintains better viability than the 4h method at 37°C

• 77% of the samples do not correspond to cells of the white series (CD45 negative) and do not show FSH receptor (typical of granulosa cells)

Results

Conclusions

- A significant population of FSH receptor-positive cells, characteristic of granulosa cells, was not found; only 11.24% of the total population tested positive.
- The viability achieved with the 1-hour processing method at 5°C post-sample collection is higher compared to samples processed after 4 hours at 37°C

References


Funding

Merck Health Foundation:
- Merck Research Grant 2023 in the Clinical Fertility Research Area.