
An Efficient Hardware Accelerator to Handle Compressed Filters
and Avoid Useless Operations in CNNs

Adrián Alcolea1, Javier Olivito1, Javier Resano1

1 Grupo de Arquitectura de Computadores de la Universidad de Zaragoza
Instituto de Investigación en Ingeniería de Aragón (I3A)

Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain.
Correos electrónicos: alcolea@unizar.es,  jolivito @unizar.es,  jresano @unizar.es

Abstract
Due to sparsity,  a  significant percentage of
the operations carried out in Convolutional
Neural Networks (CNNs) contains a zero in
at  least  one  of  their  operands.  Different
approaches try to take advantage of sparsity
in  two  different  ways.  On  the  one  hand,
sparse  matrices  can  be  easily  compressed,
saving space and memory bandwidth. On the
other hand, multiplications with zero in their
operands can be avoided.

We propose the implementation in an FPGA
of  an  architecture  for  CNNs capable  of
taking advantage of both, sparsity and filter
compression.

Introduction
A significant  percentage  of  the  operations  carried
out in CNNs contains a zero in at least one of their
operands.  In  activation  matrices,  sparsity  is
generated  by  the  use  of  non-linear  activation
functions  such  as  ReLU. In  addition,  pruning
techniques also generate zero-elements in network
filters,  so  zero-products  increase  significantly  [1]
[3].

On  another  note,  the  use  of  compressed  filter
matrices reduces the data that must be read from the
off-chip memory, and maximizes the data that can
be stored on-chip, which is very important since the
access  to  external  memories  is  usually  the  main
energy consumption factor, and often a performance
bottleneck [2].

Specific hardware accelerators could manage both,
compression  and  zero-operations  avoiding,  to
increase CNNS performance and energy efficiency.

Objectives
Our  goal  is  to  manage  compression  and  avoid
useless  operations  to  increase  CNNs performance
and energy efficiency}, which requires:

 Design hardware support to decompress the
filters matrices on the fly and carry out only
non-zero operations.

 Integrate  it  into  a  proof  of  concept  CNN
architecture implemented on an FPGA.

 Evaluate  both  the  benefits  and  the
overheads generated.

Compression scheme
We propose a compression scheme that includes a
bit  for each filter  value pointing out whether it  is
zero or not. We achieve a better compression ratio
for most filters than the most common schemes.

As an example, we assume a 5 x 4 matrix with 60%
sparsity  and  an  8-bit  data  size.  Compression
schemes with a list for the number of zeros need 2 x
8 x 8 = 128 bits, while our scheme needs 5 x 4 + 8 x
8 = 84 bits (See Figure 1).

Architecture
In  the  proposed  architecture,  N  convolutions  are
processed in parallel in N processing units. Each of
them  targets  a  different  filter  and  stores  the
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Figure 1. Comparison of compression schemes
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compressed  filter  information locally,  whereas  the
activation memories are shared (See Figure 2).

The  "pairing  unit"  takes  advantage  of  the  indices
structures to efficiently find non-zero pairs.  While
the  "activation  values  read  arbiter"  decides  the
fetching order to manage access conflicts.

Pairing unit
This module processes the matrices of indices of the
activation  map  and  the  filters,  identifying  which
computations must be carried out (those that do not
have a zero in their operands). Its main function is
to  take  advantage  of  the  indices  structures  to
efficiently find non-zero pairs.

Then  it  uses  the  filter  values  count  and  the
convolution  loop  indices  to  generate  the  actual
memory addresses of the filter and activation values
in the current pair (See Figure 3).

Activation values read arbiter
Activation values are stored in a shared memory, so
access conflicts  between multiple  processing units
may arise (See Figure 4).

One approach to maintain the requested bandwidth
consist in duplicating the number of pairs requested
per  processing  unit,  so  the  arbiter  can  take  some
decisions on the fetching order.

Contributions
 Our  compression  scheme  can  be  used  to

efficiently pair the non-zero data.

 It also achieves better compression rate than
state of the art.

 The  proposed  hardware  pipeline  handles
compressed  filters  and  discard  all  the
operations  where  at  least  one  operand  is
zero.

 We  present  a  real  implementation  on  an
FPGA. It  allows an accurate evaluation of
the  performance  and  energy  efficiency  of
our proposal.
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Figure 2. General architecture

Figure 3. Pairing unit

Figure 4. Activation values read arbiter
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