
An Efficient Hardware Accelerator to Handle Compressed Filters
and Avoid Useless Operations in CNNs

Adrián Alcolea1, Javier Olivito1, Javier Resano1

1 Grupo de Arquitectura de Computadores de la Universidad de Zaragoza
Instituto de Investigación en Ingeniería de Aragón (I3A)

Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain.
Correos electrónicos: alcolea@unizar.es, jolivito @unizar.es, jresano @unizar.es

Abstract
Due to sparsity, a significant percentage of
the operations carried out in Convolutional
Neural Networks (CNNs) contains a zero in
at least one of their operands. Different
approaches try to take advantage of sparsity
in two different ways. On the one hand,
sparse matrices can be easily compressed,
saving space and memory bandwidth. On the
other hand, multiplications with zero in their
operands can be avoided.

We propose the implementation in an FPGA
of an architecture for CNNs capable of
taking advantage of both, sparsity and filter
compression.

Introduction
A significant percentage of the operations carried
out in CNNs contains a zero in at least one of their
operands. In activation matrices, sparsity is
generated by the use of non-linear activation
functions such as ReLU. In addition, pruning
techniques also generate zero-elements in network
filters, so zero-products increase significantly [1]
[3].

On another note, the use of compressed filter
matrices reduces the data that must be read from the
off-chip memory, and maximizes the data that can
be stored on-chip, which is very important since the
access to external memories is usually the main
energy consumption factor, and often a performance
bottleneck [2].

Specific hardware accelerators could manage both,
compression and zero-operations avoiding, to
increase CNNS performance and energy efficiency.

Objectives
Our goal is to manage compression and avoid
useless operations to increase CNNs performance
and energy efficiency}, which requires:

 Design hardware support to decompress the
filters matrices on the fly and carry out only
non-zero operations.

 Integrate it into a proof of concept CNN
architecture implemented on an FPGA.

 Evaluate both the benefits and the
overheads generated.

Compression scheme
We propose a compression scheme that includes a
bit for each filter value pointing out whether it is
zero or not. We achieve a better compression ratio
for most filters than the most common schemes.

As an example, we assume a 5 x 4 matrix with 60%
sparsity and an 8-bit data size. Compression
schemes with a list for the number of zeros need 2 x
8 x 8 = 128 bits, while our scheme needs 5 x 4 + 8 x
8 = 84 bits (See Figure 1).

Architecture
In the proposed architecture, N convolutions are
processed in parallel in N processing units. Each of
them targets a different filter and stores the

Revista “Jornada de Jóvenes Investigadores del I3A”, vol. 6 (Actas de la VII Jornada de Jóvenes Investigadores del I3A - 8 de junio de
2018). ISSN 2341-4790.

Figure 1. Comparison of compression schemes

mailto:correo_del_autor@unizar.es
mailto:alcolea@unizar.es
mailto:alcolea@unizar.es

compressed filter information locally, whereas the
activation memories are shared (See Figure 2).

The "pairing unit" takes advantage of the indices
structures to efficiently find non-zero pairs. While
the "activation values read arbiter" decides the
fetching order to manage access conflicts.

Pairing unit
This module processes the matrices of indices of the
activation map and the filters, identifying which
computations must be carried out (those that do not
have a zero in their operands). Its main function is
to take advantage of the indices structures to
efficiently find non-zero pairs.

Then it uses the filter values count and the
convolution loop indices to generate the actual
memory addresses of the filter and activation values
in the current pair (See Figure 3).

Activation values read arbiter
Activation values are stored in a shared memory, so
access conflicts between multiple processing units
may arise (See Figure 4).

One approach to maintain the requested bandwidth
consist in duplicating the number of pairs requested
per processing unit, so the arbiter can take some
decisions on the fetching order.

Contributions
 Our compression scheme can be used to

efficiently pair the non-zero data.

 It also achieves better compression rate than
state of the art.

 The proposed hardware pipeline handles
compressed filters and discard all the
operations where at least one operand is
zero.

 We present a real implementation on an
FPGA. It allows an accurate evaluation of
the performance and energy efficiency of
our proposal.

REFERENCES

[1]. ALBERICIO, P. JUDD, T. HETHERINGTON, T.
AAMODT, N. E. JERGER, and A. MOSHOVOS.
Cnvlutin: Ineffectual-neuron-free deep neural network
computing. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture
(ISCA) , pages 1-13, June 2016.

[2]. SONG HAN, HUIZI MAO, and WILLIAM J.
DALLY. Deep compression: Compressing deep neural
networks with pruning, trained quantization and
huffman coding. Computing Research Repository,
eprint arXiv: 1510.00149, 2015.

[3]. SONG HAN, JEFF POOL, JOHN TRAN, and
WILLIAM DALLY. Learning both weights and
connections for efficient neural network. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R.
Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 1135-1143. Curran
Associates, Inc., 2015.

ACKNOWLEDGEMENT
This work was supported in part by grants TIN2016-76635-C2-
1-R (AEI/FEDER, UE) and Consolider NoE TIN2014-52608-
REDC (Spanish Gov.), gaZ: T48 research group (Aragón Gov.
and European ESF), and HiPEAC4 (European H2020/687698).

Revista “Jornada de Jóvenes Investigadores del I3A”, vol. 6 (Actas de la VII Jornada de Jóvenes Investigadores del I3A - 8 de junio de
2018). ISSN 2341-4790.

Figure 2. General architecture

Figure 3. Pairing unit

Figure 4. Activation values read arbiter

	Abstract
	Introduction
	Objectives
	Compression scheme
	Architecture
	Pairing unit
	Activation values read arbiter
	Contributions
	REFERENCES
	ACKNOWLEDGEMENT

