
Revista “Jornada de Jóvenes Investigadores del I3A”, vol. 8 (Actas de la IX Jornada de Jóvenes Investigadores del I3A -11 de diciembre
de 2020). ISSN 2341-4790.

File-based race conditions in UNIX: TOCTOU
Razvan Raducu1, Ricardo J. Rodríguez1, Pedro Álvarez1

1 Distributed Computing (DisCo)
Instituto de Investigación en Ingeniería de Aragón (I3A)

Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain.
e-mail: {razvan, rjrodriguez, alvaper}@unizar.es

Abstract
This work presents an introduction to the Time Of
Check to Time Of Use (TOCTOU) vulnerability as
well as the development of a user-space library that
hooks vulnerable system calls and modifies their
behavior.

Introduction
Race conditions may arise when performing
operations that involve the file system because there
is no guarantee of atomicity for I/O operations or
consistency of the file system. These vulnerabilities
are a true menace to integrity, availability and
confidentiality of information systems since they
may allow an attacker to escalate privileges. These
vulnerabilities, known as Time Of Check to Time Of
Use (TOCTOU), are a true challenge given their non-
deterministic nature. Detecting and preventing them
is an open research field. Their reproduction is
equally difficult because their exploitability depends
upon external factors such as system load or
environment variables. This work presents a study of
the vulnerability as well as our attempt at thwarting
TOCTOU by implement a user-space library that
replaces current file system calls with safer versions.

TOCTOU Overview

TOCTOU may arise when a given program performs
several consecutive system calls that reference file
system objects via their name, also known as
pathname. UNIX-like operating systems are
especially prone to such race conditions given their
file system nature. These operations are neither
atomic or isolated in the system. That is, an attacker
could modify the underlying file system between any
given consecutive system calls since the file system
is shared among all running processes [1]. Since
TOCTOU requires two or more consecutive non-
atomic file-related operations, it is safe to say
TOCTOU happens in two steps [2]:

1. The vulnerable program checks some
condition about a given file, the Time Of
Check.

2. The vulnerable program modifies the file
assuming the previous condition still holds,
the Time Of Use.

In order to be profitable by an attacker, the vulnerable
program must be running with higher privileges than
the attacker. That is, TOCTOU could be present but
its exploitation could provide no benefit. If the
vulnerable program is running with higher privileges,
e.g. SUID to root, and an attacker is able to
successfully exploit it, they will be able to potentially
escalate that privileges. In UNIX universe, this
translates to the attacker being a user with lesser
privileges than the running program. It is also strictly
necessary for the vulnerability to be exploitable that
the attacker must have permissions to modify the
referenced file. This implies that there are several
directories immune to TOCTOU like /root or /bin,
amongst many others [3].

TOCTOU is usually present in UNIX-like operating
systems due to their referencing and path traversal
mechanism. These OS allow users to reference file
objects using either pathnames or file descriptors.
When using pathnames, the application is susceptible
to TOCTOU because the relation pathname-file
object is not static and it can be modified by external
processes. On the other hand, using file descriptors
makes the application immune to TOCTOU since file
descriptors refer to a single file object and cannot be
modified by external agents[4].

Defending against TOCTOU
We developed a defense against TOCTOU that
consists of a user-space library that intercepts
vulnerable system calls. It changes the behavior of
the original system call so it performs additional
checks and verifies the integrity of the referenced file
objects between system calls. Depending upon the
result of the verification the library either calls the
original system call (no race condition was detected)

Revista “Jornada de Jóvenes Investigadores del I3A”, vol. 8 (Actas de la IX Jornada de Jóvenes Investigadores del I3A -11 de diciembre
de 2020). ISSN 2341-4790.

or aborts the program’s execution (race condition
detected) thus thwarting the exploitation attempt.

The library is loaded dynamically in the memory
space of every single process executed in the system
whose real user ID (RUID) or real group user ID
(RGID) differs from the process’ effective user ID
(EUID) or effective group ID (EGID). It is loaded by
the dynamic linker before any other library so when
a program performs a access() call, for example, it
executes our version of the function instead. This
behavior is achieved thanks to /etc/ld.so.preload [5],
[6].

Wei and Pu previously identified the set of
vulnerable system calls that can result in TOCTOU
[7]. Our library intercepts a total of 46 API functions
that refer to file system objects via their name.

Our library maintains and manages an internal per-
process list of referenced object and several metadata
information like inode, path, device id or file mode.
When an object is referenced for the first time, the
information is retrieved and stored. Consecutive
references to the same object are then checked
against the cached information and if they do not
match, and the process did not legitimately change
the referenced object, it means an external process or
agent modified the file. In this situation, the program
is aborted and the logs are updated.

Limitations
When testing our library, we found several
limitations that we consider as future improvements.

The most critical limitation we found is that our
library could be a victim of TOCTOU as well. The
reason behind this is that we are adding a mediation
layer between the application and the current API,
but the underneath system calls remain unchanged.
TOCTOU happens within the API and it would
require changes in the kernel to completely remove
the vulnerability.

Another limitation is related to cooperating
processes. Since our library maintains the metadata
information on a per-process basis, whenever a
process performs a fork() or exec() and the
subsequent processes legitimately change the file
object, our library would result in a false positive thus
aborting legitimate programs.

Additionally, our library hooks standard C
implementation of such functions (GLIBC) but there
could be others. Furthermore, our library is limited to

dynamically-linked programs. Statically-linked
binaries are not protected by our library since their
execution does not involve the dynamic linker.

Conclusions
We presented an introduction to TOCTOU
vulnerability and how it can be exploited by any
given attacker. Additionally, we presented our own
approach when thwarting exploitation attempts. Our
user-space library hooks vulnerable system calls and
performs additional checks in order to detect external
manipulations of the referenced file objects.

TOCTOU vulnerability is still a menace to UNIX-
like operating systems. Its detection is difficult given
its non-determinism and how subtle it is to detect and
be aware-of. Many defenses have been previously
proposed but they either are not enough or have been
defeated. Given the current state, defending against
TOCTOU falls on programmers and, from a security
perspective, that is not viable. Security-aware
programming requires a lot of experience and is both
error-prone and a very difficult task.

REFERENCES
[1] E. Tsyrklevich and B. Yee, “Dynamic detection and

prevention of race conditions in file accesses,” SSYM’03
Proc. 12th Conf. USENIX Secur. Symp., p. 17, 2003.

[2] M. Bishop and M. Dilger, “Checking for Race
Conditions in File Accesses,” Comput. Syst., vol. 9, no.
2, pp. 131–152, 1996.

[3] J. Wei and C. Pu, “TOCTTOU Vulnerabilities in UNIX-
Style File Systems : An Anatomical Study,” Security,
no. December, pp. 1–13, 2005.

[4] M. J. Bach and others, The design of the UNIX operating
system, vol. 5. Prentice-Hall Englewood Cliffs, NJ,
1986.

[5] J. R. Levine, Linkers and Loaders. Morgan Kaufmann,
2000.

[6] H. Casanova, “Linking and Loading,” 2010.

[7] J. Wei and C. Pu, “Modeling and preventing TOCTTOU
vulnerabilities in Unix-style file systems,” Comput.
Secur., vol. 29, no. 8, pp. 815–830, Nov. 2010.

	Abstract
	Introduction
	TOCTOU Overview
	Defending against TOCTOU
	Limitations
	Conclusions
	REFERENCES

