Ring Oscillator PUF on FPGA: Design and Characterisation by Using Second-Order Compensated Measurement

Jorge Fernandez-Aragon, Guillermo Diez-Señorans, Miguel Garcia-Bosque, Santiago Celma
Grupo de Diseño Electrónico (I3A), Universidad de Zaragoza, Mariano Esquilor s/n 50018, España

Stochastic variations inherent to manufacturing process

PUF

IDENTIFIABILITY

PHYSICALLY UNCLONABLE

RO-PUF

a) FPGA-implimented RO array

b) 51 RO reproduced in 20 different positions

c) RO = 3 inverters + 1 AND gate

IMPLEMENTATION

RESULTS

Intra-distance and inter-distance

Receiver Operation Characteristic (ROC)

More secure

Better Identification

More robust

Extract oscillation frequency

Compare the frequencies of pairs of oscillators

32-bit array: sign bit (1 bit) + subtraction of frequencies in binary format (31 bits)

Create a 50-bit word corresponding to the bit we select in each case and study the reliability with the Hamming distance

FPGA: Zynq 7000 SoC

Sign bit $f_i > f_j \rightarrow 1$ or $f_i < f_j \rightarrow 0$

Remaining bits $Binary(|f_i - f_j|)$