Combustion of Ammonia Mixed with Dimethyl Ether
Adrián Ruiz-Gutierrez, Paloma Rebollo, María U. Alzueta
Thermochemical Processes Group (GPT)
Instituto de Investigación en Ingeniería de Aragón (I3A)
Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, España
E—mail: adrian.ruiz@unizar.es

Introduction

| NH3 conversion occurs at lower temperature with excess of O2. |
| NO formation occurs at the highest temperatures studied with an ammonia yield to NO not higher than 62 ppm. |
| NO formation is lower if the DME/NH3 ratio increases. |
| DME derived species interact with NO. |
| The presence of H/OH radicals promotes NH3 conversion. |
| Radicals formed from DME interact with NH3, promoting its conversion. |
| The reaction is globally shifted towards the formation of N2. |

Methodology

References

Acknowledgment

The authors express their gratitude to Project TED2021-129557B-I00 financed by MCIN/AEI/10.13039/501100011033/FEDER "Una manera de hacer Europa", and to Aragon Government (Ref. T22_23R), cofounded by FEDER "Construyendo Europa desde Aragón".

Conclusions

Figure 1. A) NH3 concentration. B) DME concentration. C) NO concentration.

Figure 2. Reaction pathways of NH3 and DME.

Figure 3. Normalized Sensitivity NH2.