Effect of tumor compaction on immune cell penetration

Ismael Perisé-Badía¹, Clara Bayona¹, Teodora Ranđelović¹,², Ignacio Ochoa¹,²
¹ TME Lab, Aragon Institute of Engineering Research (I3A), Aragon Institute of Health Research (IISAr), University of Zaragoza, Zaragoza, Spain
² Centro de Investigación Biomédica en red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain

ABSTRACT
The main objective of this project is to gain a better understanding of the obstacles encountered by immune cells when fighting glioblastoma tumors. An example of this is the high degree of compaction of these tumors, which hinders the penetration of cells and drugs. This phenomenon can be reversed with certain compounds, such as blebbistatin.

INTRODUCTION
Glioblastoma: Importance and Challenges
Glioblastoma is the most common type of brain cancer and one of the cancers with the highest mortality rate, primarily due to treatment resistance and high recurrence rates after surgery [1]. Furthermore, glioblastoma tumors create an unfavorable environment for immune cells, limiting their action, rendering traditional immunotherapy ineffective against this type of cancer [2]. The main objective of this project is to gain a better understanding of the obstacles encountered by immune cells in combating glioblastoma, in order to eliminate these barriers and enhance the patient’s own defenses against the tumor.

Advanced Techniques
By utilizing three-dimensional cell cultures (spheroids), laboratory conditions can replicate the tumor and its environment, allowing for a better understanding of immune system inhibition mechanisms and the search for new strategies that enhance the effect of cells that defend our bodies.

RESULTS
OUTLINE

CONCLUSIONS AND FUTURE WORK
Blebbistatin has been shown to be a compound capable of relaxing the intercellular forces present in glioblastoma spheroids, thereby reducing the degree of spheroid compaction.

To quantify this compaction, stiffness assays (Fig. 3a) will be conducted before and after the addition of blebbistatin.

Furthermore, by obtaining more relaxed spheroids, it may be easier for immune cells and drugs to access their interior. For this reason, the next steps following these experiments involve the addition of immune cells, antibodies, and trackable small molecules, such as fluorescent glucose, in order to compare their penetration into the spheroid’s interior with and without the effect of blebbistatin (Fig. 3b).

Finally, a microfluidic model will be crafted combining the glioblastoma spheroids along with immune and endothelial cells (Fig. 3c).

ACKNOWLEDGEMENTS
Financial support from the GBM_IMMUNE project (PID2021-126510GB-C41/18/10.13039/501100011033/FEDER, UE) is gratefully acknowledged (Ministry of Science and Innovation, Agency and European Regional Development Fund)

The authors are also grateful for the support of the Government of Aragón (DGA-T62_23R) and the intellectual and technical assistance of CIBER-BBN.

REFERENCES

XII Jornada de Jóvenes Investigadores/as del I3A
15 de junio de 2023, Zaragoza, Spain