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Abstract 
In this work, we extend MeshGraphNets to simulate 
collisions involving plastic material, previously 
limited to hyperelastic, addressing higher non-
linearities and energy dissipation. While previous 
work estimated only the displacement field, our 
approach also resolves the complete tensor stress 
field, under different boundary conditions and 
geometries. 

Introduction 
Plasticity governs many phenomena surrounding us 
[2], and its comprehension is crucial for numerous 
industrial processes, such as car design and 
production. Current state-of-the-art approaches for 
modeling realistic collisions are based on the Finite 
Element Method (FEM), an iterative method that 
provides high-fidelity solutions by rigorously 
satisfying the laws of physics. However, these 
methods are still slow at solving such simulations. 
The reason for this high computing time is the non-
linearities arising from large deformations and 
material behavior, which require the solver to 
subdivide the problem into multiple iterative steps to 
guarantee convergence.  

On the other hand, data-driven approaches incur an 
overhead time cost during training but are efficient 
during inference, making them attractive to 
computational mechanics. Rather than guaranteeing 
physics by design, these models regress the physics 
from the data. The work of [1] introduced 
MeshGraphNets, presenting the first model based on 
Graph Neural Networks (GNNs) capable of solving 
the master-slave collision problem for hyperelastic 
materials, reporting only results on positions. 

Our contributions are: 1) Modeling collisions in the 
plastic regime for both the position and the stress 
fields using MeshGraphNets.  

2) Employ transfer learning to speed-up training and 
enhance solution quality.   

3) Conduct an analysis of the generalization 
properties and robustness to unseen geometries. 

Modeling Plasticity 
The approach followed uses a temporal integrator 
framework. The model predicts the displacement and 
stress field of each node for the next time step t+1 
based on positional information at time t. One key 
aspect is that the model is trained on one-step 
predictions only but rollouts are made over long 
trajectories (>400 steps) at inference.  

Our master-slave collision setup involves a rigid 
cylinder actuator as the master, imposing 
displacements, and an irregular hexahedral 
deformable plate as the slave (Fig.1). The master-
slave meshes are treated as a multi graph G(v, ɛmesh), 
where the vertices are the nodes of the meshes and 
the edges are the distances between connected nodes 
at initial time t0 (undeformed) and at time t 
(deformed). For the collision an additional edge set is 
created to connect both graphs G(v, ɛmesh, ɛcontact) 
based on a radius distance Rw. This second set of 
edges facilitates the communication of imposed 
displacements from the actuator to the plate. 

The model follows the Encoder-Processor-Decoder 
architecture proposed in the MeshGraphNets work 
(Fig.1). The Encoder block comprises three different 
encoders, one for each set of the multigraph, each 
projecting the set graph into the latent space. The 
Processor block models the collision between the 
actuator and plate and the plate's behavior under 
these conditions, updating the graph via message 
passing blocks. The Decoder outputs the nodal 
displacements and corresponding stress field t+1. 
Each block consists of MLPs with ReLU activation 
layers. 

Experiments and Results 
Datasets: The dataset consists of 100 high-fidelity 
3D-trajectories, each containing 435 steps, solved 
with Abaqus in quasi-static conditions. Variability in 
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the dataset arises from changes in boundary 
conditions, including fixed faces of the plate, actuator 
location and its imposed displacement, and variations 
in plate geometry such as thickness, hole radius 
[0.05-0.1cm] and location. All trajectories are 
conducted in two steps: loading and unloading, to 
highlight the plasticity phenomena. The meshes are 
tetrahedral elements, with approximately 600 to 800 
each. Due to quasi-static, time is a pseudo-time 
variable representing incremental steps, not physical 
time. 

The dataset is split into 80% train, 10% validation, 
and 10% test, each with varying dataset features. 
Additionally, we generate the test extra set, 
consisting of 20 trajectories with greater hole radius 
[0.1-0.15cm] to analyze the generalizability of our 
model to out-of-distribution geometries 
(extrapolation) 

Experiments: The first experiment models the 
displacement and the single von Mises stress fields. 
Achieving less than 1% relative errors in positions 
(q) and 10% in von Mises stress (σv.mises) for the whole 
rollout. The model shows robustness to extrapolated 
geometries as shown in Fig. 2.a.  

The second experiment models the displacement and 
the complete 6-tensor stress fields. Achieving less 
than 1% relative errors in positions (q) and 10% for 
the whole 6-tensor stress field  (σcomplete). Also 
presenting robustness to extrapolated geometries as 
shown in Fig. 2.b. 

In the first experiment the model was trained from 
scratch, reaching convergence  after around 10 M 
training steps. In contrast, in the second experiment 
we used the pre-trained encoder-processor from the 
previous model and added a new decoder to output 

the displacements and completed the 6-tensor stress 
field. This allowed us to reduce down to 1M the 
required steps to reach convergence. 

The optimal architecture after hyperparameter 
optimization was a 3-layer MLP of 128 neurons for 
the encoders, processor, and decoder, with a 
processor of 15 independent message passing blocks. 
The experiments were carried out on a single GPU 
GTX 4090 24GB. Code and dataset are available 
under request. 

Conclusions 
The experiments prove that collisions between rigid-
plastic bodies can be effectively modeled using 
MeshGraphNets as a data-driven approach. This 
architecture leverages the mesh-based topology of 
our Finite Element Method (FEM) simulations. 
Despite operating on a nodal architecture through 
message passing, we can generate solutions for the 
entire plate at a global scale. The approach 
overcomes the challenges of modeling plasticity, 
where the relationship between strain and stress is 
inherently a local phenomenon; however, the entire 
deformation field must be solved globally, 
considering factors such as plastifying partial 
regions, boundary conditions, and the actuator's 
displacements.  
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Fig 1. MeshGraphNet Encoder-Processor-Decoder architecture to model collision. Left: multi-graph at time t with nodes, edges mesh 
and edges contact. Center: MeshGraphNet: Encoder-Processor-Decoder. Right: output at t+1 of plate nodes, displacements and stress. 
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Fig 2. Boxplot Relative Root Mean Squared Error (RRMSE) for the train, test (interpolation), and test extra (extrapolation) data splits. 
The mean is computed across all nodes and steps in the rollout (with 435 steps) for positional (q) and stress (σ) variables. The infinite 
norm is computed on each step and used as a normalizer for the squared error per variable.  a) Results of the first experiment, which 
models displacements and a single von Mises stress field. b) Results of the second experiment, which models displacements and a 6-
tensor stress field. 
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