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ABSTRACT The characterisation of wind is of great interest in multiple disciplines such as city planning, pedestrian comfort and energy generation. We propose a conditional
Generative Adversarial Network (cGAN), based on the Pix2Pix model [1], that can generate detailed local wind fields in areas with complex orography or an urban layout, which
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components as channels); :
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Figure 2. CFD mesh rendering of the Pyrenees (sierra de la Partacua) test case. It has 250k cells, with a Figure 6. CFD mesh rendering of the Zaragoza (Actur district) test case. It has 2M cells, with a resolution up to
resolution up to ~12m. ~2m.
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Figure 3. General schema and data workflow for the Pyrenees case. Explicit interactions between the Generator Figure 7. General schema and data workflow for the Zaragoza case. Special attention in the post processing
and Discriminator of the cGAN. step, where different image resolution can be obtained or image channel feature cam be articulated.
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RESULTS Mean Absolute Error of 1,36 m/s and 18,7° compared to CFD. RESULTS Mean Absolute Error of 0,35 m/s and 27° compared to CFD.
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