EPDIFF-JF-NET: ADJOINT JACOBI FIELDS FOR DIFFEOMORPHIC REGISTRATION NETWORKS

Ubaldo Ramón Júlvez, Mónica Hernández Giménez, Elvira Mayordomo Cámara

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

(1) Large deformations diffeomorphic metric mapping (LDDMM)

•Diffeomorphism that minimizes energy E(v) between images I_0 (source) and I_1 (target):

$$E(v_0) = \langle Lv_0, v_0 \rangle_{L^2} + \frac{1}{\sigma^2} ||I_0 \circ (\phi_1^v)^{-1} - I_1||_{L^2}^2,$$

s.t. Euler-Poincare differential equation (EPDiff):

$$\partial_t v_t + a d_{v_t}^{\dagger} v_t = 0 \text{ in } \Omega \times (0, 1],$$

•High computational complexity. Current deep-learning aproaches are either supervised or non-geodesic.

(2) Adjoint Jacobi Fields

•Computing $\nabla_{v_0} E(v_0)$ is costly, but computing $\nabla_{v_1} E(v_0)$ is straightforward.

•Perform Parallel Transport with Reduced Adjoint Jacobi Fields:

$$\partial_t U_t + a d_{v_t}^{\dagger} U_t = 0 \text{ in } \Omega \times (0, 1],$$

$$\partial_t w_t - a d_{v_t} w_t + a d_{v_t}^{\dagger} v_t + U_t = 0 \text{ in } \Omega \times (0, 1],$$

•Final gradient expresion:

$$\nabla_{v_0} E(v_0) = 2v_0 + w(0).$$

(3) Parallel Transport Registration Framework

•Registration Network predicts initial velocity field v_0 .

•Use geodesic shooting to compute v_t and ϕ , use parallel transport to compute final gradient $\nabla_{v_0} E(v_0)$.

•Back-propagate gradient through the network as usual to train it.

•Multi-resolution CNN architecture, 3 identical levels, each level takes results from the previous level:

$$L(I_1, I_0, v_0) = \sum_{\ell \in [1..3]}^{\ell} L_{JF}(I_1^{\ell}, I_0^{\ell}, v_0^{\ell}),$$

$$L_{JF}(I_1, I_0, v_0) = \langle Lv_0, v_0 \rangle_{L^2} + \frac{1}{\sigma^2} lNCC(I_1, I_w),$$

(4) Experiments and Results

•OASIS dataset with 414 T1-weighted brain MRI images, with automatic segmentations. NIREP16 dataset 16 images, with manual segmentations.

•We obtain State-of-the-art results on two independent brain MRI datasets.

•Our method features low inference times making it a promising tool for large-scale computational anatomy studies.

