

Characterization by Electrical Impedance of an In Vitro Model Based on Tumor Cell Spheroids

Ismael Perisé-Badía¹, Borja López-Alonso², Pablo Briz², Óscar Lucía², Héctor Sarnago², Ignacio Ochoa^{1,3}

1 TME Lab; Aragon Institute of Engineering Research (I3A); Institute for Health Research Aragon (IIS); University of Zaragoza, Zaragoza, Spain 2 Group of Power Electronics and Microelectronics (GEPM); Aragon Institute of Engineering Research (I3A); Zaragoza, Spain 3 Centro de Investigación Biomédica en red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN); Zaragoza, Spain

Glioblastoma 3D models Impedance

OBJECTIVES

- To electrically characterize an *in vitro* model of tumor spheroids
- Assess its viability as a tumor tissue model in the study of
- electroporation
 Increase the focalization of electroporation treatments through the local manipulation of electrical conductivity by the use of blebbistatin

METHODS

- U-251 MG cell line
 "Non-adherent surface" (NAS) method
 30,000 cells in round bottom wells
 - Antiadherent solution
 - Centrifugation
- Blebbistatin
 - 2 days after the spheroids seeding
 - Final concentration of 10 μg/mL
 - Medium refreshed after 3 days
 - Mantained for 3 days more

Small modified

- electroporation cuvette

 o 1 µL hole
- Impedance LCR analyzer
- Spheroid immersed in its medium

RESULTS

SPHEROIDS REDUCE THEIR SIZE OVER TIME

Figure 1: Evolution over time of two different spheroids (30,000 initial U-251 MG cells both)

Phase contrast microscopy

BLEBBISTATIN SMOOTHENS THIS REDUCTION IN SIZE

Figure 2: Evolution of the diameter of the spheroids, normalized respect the original size

NEXT STEPS

BLEBBISTATIN INCREASES ELECTRICAL CONDUCTIVITY IN SPHEROIDS

Figure 3: Impedance assay

BLEBBISTATIN CONCENTRATES THE ELECTRIC FIELD

Figure 4: Computational simulation (*in silico* model) of the electric field in the designed microcuvette

Blebbistatin has proven to be a molecule capable of **relaxing the intercellular forces** present in GBM spheroids, thereby reducing the **degree of compaction** of these spheroids.

Electrical impedance tests may be appropriate for estimating the magnitude of **physical changes** in tissue structure as they may modify its electrical parameters.

