

Development of cutting-edge DNA nanocarriers with cardioregenerative capacity using the therapeutic potential of microRNAs

Marcos Sánchez Barat a,b, Natalia Hernández-Bellido a,b, Alejandro Postigo c, Marina Ripalda-Paredes, Silvia Hernández-Ainsa c,d, Laura Ordovás a,b,d

a Instituto de Investigación en Ingeniería de Aragón (I3A), 50009 Zaragoza, Spain

^b Instituto de Investigación Sanitaria Aragón (IISA), 50009 Zaragoza, Spain

^c Instituto de Nanociencia y Materiales de Aragón (INMA), 50009 Zaragoza, Spain

d Fundación ARAID. Gobierno de Aragón, 50018 Zaragoza, Spain.

E-mail: m.sanchez@unizar.es

Introduction

Cardiovascular diseases, including myocardial

Purpose

To create a **novel nanotherapy** capable of delivering cardioregenerative miR-199a-3p specifically to the heart using cardiospecific targeting ligands across the vascular barrier.

Results

Characterization of the Nanoparticles

Size evaluation

Nanoparticles DLS

Nanoparticle	Hydrodynamic diameter (nm)
RCA	158 ± 60
RCT	327 ± 51
DNS	70 ± 20

Transmision Electron

According to the DLS, the three types of nanoparticles assembled in structures of above 70 nm. Furthermore, the **DLS size data agree** with those obtained by **TEM** for the **DNS**.

RNAse H in vitro degradation assay

RNAse H can digest the DNA-RNA heteroduplexes leading to the release of miR-199a-3p. No digestion is observed for the fully DNA-based DNS.

Internalization

All the tested fluorescently-labelled DNS internalize efficiently in Hek293 at 24h.

Functional Characterization

Creation of a reporter system of miR-199a-3p activity

Transfected nanoparticles 1.5-0.0 Nano miR-199a-3p Nano Mock

DNS transfected with lipofectamine are able to release functional miR-199a-3p, causing a decrease in the reporter signal, while non-transfected DNS are not, suggesting stability issue in serum.

DNS aptamer functionalization

Agarose gel SIZE

The **DNA aptamers** correctly **integrate in the nanoparticle** by standard basepairing with the overhangs.

In vitro model of cardiac andothelial barrier

heteroduplexes digestion

Disassembled DNS

Conclusions

- Three types of nanoparticles capable of loading miR-199a-3p have been successfully developed and the in vitro functionality of DNS has been verified in a routine cellular model.
- A strategy for attaching the aptamer to the nanoparticles has been achieved, in addition to developing a cardiac endothelial barrier model that will allow transcytosis studies to be carried out in the future.

Future Work

- Carry out nanoparticle targeting studies using aptamers.
- Assess nanoparticles activity in a model of human heart cells.
- Stabilize the RNA component of the nanoparticles

Acknowledgments

This work has been funded by Government of Aragon (Grant LMP128_21, Research groups T39_23R and E47_23R and Predoctoral Fellowship CPB_14_22) and through PID2020-113003GB-I00 by MCIN/ AEI /10.13039/501100011033 and PCI2023-143438 and PCI2023-143390 by MCIN/AEI /10.13039/501100011033 and co-funded by EU.

