Cost-sensitive learning for Rule Classification: Evaluation of its applicability for Integrated Pest Management
DOI:
https://doi.org/10.26754/jji-i3a.201701617Resumen
This work evaluates and compares different supervised learning algorithms using a costsensitive approach to find a model that classifies legal rules related to pesticides as prohibitions and permissions. The naive Bayes classifier achieves the best results and it would be applicable because it doesn't misclassify prohibitions as permissions.Descargas
Los datos de descargas todavía no están disponibles.
Descargas
Cómo citar
Espejo-García, B., López-Pellicer, F. J., & Zarazaga-Soria, F. J. (2017). Cost-sensitive learning for Rule Classification: Evaluation of its applicability for Integrated Pest Management. Jornada De Jóvenes Investigadores Del I3A, 4, 57–58. https://doi.org/10.26754/jji-i3a.201701617
Número
Sección
Artículos (Tecnologías de la Información y las Comunicaciones)