A Digitally Programmable Active-RC Filter for On-Chip Portable Sensor Applications

Alejandro Márquez, Nicolás Medrano, Belén Calvo, Pedro A. Martínez

Grupo de Diseño Electrónico (GDE) Instituto de Investigación en Ingeniería de Aragón (I3A) Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain. Tel. +34-976762707, e-mail: amarquez@unizar.es

Abstract

An enhanced digital tuning approach for RC-active circuits is presented. Simulations of a 12-bit CMOS second-order filter provide a 11.46-bit effective resolution to linearly control the frequency over three decades with THD < -70 dB. Its low power, 0.5 mW, and low active area, 0.087 mm², prove its suitability for on-chip sensing systems.

Motivation

This work is focused on the design of a highly reconfigurable low-power on-chip preconditioning stage to support CMOS impedance and MEM microresonator-based sensors. This requires a wide frequency tuning range -from hundreds of Hz to hundreds of kHz- not achieved so far with current CMOS technologies, further complying with the key constraints of portable systems: compact size and high power efficiency [1-2].

Tunable Filter Implementation

To cover the target frequency range, the most suitable approach is based on RC-active circuits, using core analog cells (typically OpAmps) to achieve a low-voltage low-power compact solution, and incorporating digitally programmable elements to overcome the limited tuning capability of this approach. This work proposes the use of a new CMOS digitally programmable block based on a hybrid current summing/division network (CS/DN, Fig. 1) that, besides, provides linear frequency-tocode dependence. The current summing network (CSN), based on a second generation current conveyor (CCII $^+$), provides the m most significant bits (MSB), while the l least significant bits (LSB) correspond to a current division network (CDN) implemented with a MOS R/2-R ladder. Its input/output current relationship is given by

$$I_{out} = I_{LSB} \left[1 + \sum_{j=0}^{n-1} d_j 2^j \right] = \frac{I_{in}}{2^l} \left[1 + D(n) \right]$$
 (1)

where d_j are the coefficients of the *n*-bit digital control word D(n).

This CS/DN, with m = 4 and l = 8, has been used to implement a 12-bit digitally programmable

second order KHN universal filter (Fig. 2), fully integrated in a 1.8V-0.18µm CMOS technology. The filter active cell is a specifically designed 2-stage OpAmp (Fig. 3) that features as main performances 95 dB DC gain, rail-to-rail operation, 10 MHz unity gain frequency and 126.5 µW power consumption. The response of the basic programmable active RC-integrator (Fig. 4) with $R = 100 \text{ k}\Omega$, $R_F = 1 \text{ M}\Omega$ and C = 30 pF shows a characteristic frequency given by

$$f_o = \frac{1}{2\pi C R_{EQ}} = \frac{1}{2\pi C R} \frac{1 + D(12)}{256}; \quad R_{EQ} = \frac{256R}{1 + D(12)}$$
 (2)

which linearly ranges from 216 to 887 kHz (4.5% maximum error) with a phase error lower than 0.5°.

For the filter, with HRP resistances $R=100 \text{ k}\Omega$, $R_1=R_2=R_3=R_F=50 \text{ k}\Omega$ and MIM capacitors C=30 pF, low-pass (v_{LP}) , high-pass (v_{HP}) , and band-pass (v_{BP}) outputs are attained, characterized by a gain $k=\sqrt{R_1R_F}/R_2=1$, a quality factor $Q=R_3/\sqrt{R_1R_F}=1$, and a characteristic frequency f_0 given by (2). It occupies 0.087 mm² (active area) of which 0.0645 mm² is used by capacitors, with a power consumption of 0.5 mW. Fig. 5 shows the digitally controlled low-pass section magnitude response, which varies linearly from 205 Hz (D=0) to 850 kHz (D=2816) preserving Q almost constant (11.46 bits effective resolution). Table I summarizes its main performances and compares them with previous works.

Conclusions

A 1.8V-0.18μm CMOS KHN filter has been presented featuring linear frequency tuning over three decades, with good distortion figures, reduced area and 0.5 mW power consumption.

REFERENCES

- [1]. H. A. ALZAHER. A CMOS Digitally Programmable Universal Current-Mode Filter. *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 55, no. 8, pp. 758-762, 2008.
- [2]. A. RASEKH, M. S. BAKHTIAR. Design of Low-Power Low-Area Tunable Active RC Filters. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017. DOI: 10.1109/TCSII.2017.2658635.

Fig. 1. Proposed CS/DN architecture and symbol.

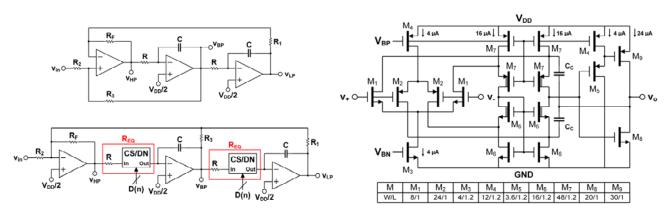


Fig. 2. KHN filter: classical (up) and proposed (down).

Fig. 3. OpAmp scheme and transistor sizes in $(\mu m/\mu m)$.

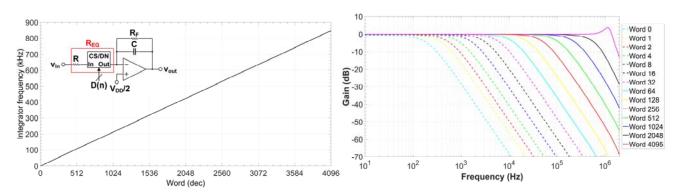


Fig. 4. 12-bit RC-active integrator and its characteristic frequency.

Fig. 5. Digital frequency tunability of the low-pass filter.

TABLE I. KHN FILTER PERFORMANCES AND COMPARISON			
Parameter	[1], 2008, meas.	[2], 2017, meas.	This work, 2017, sim.
Operation (Order)	CDN (2 nd order)	CSN (4 th order)	CS/DN (2 nd order)
Technology (Supply)	CMOS 0.35 μm (±1.5 V)	CMOS 0.18 µm (1.8 V)	CMOS 0.18 µm (1.8 V)
Resolution	6 bit, binary code	6 bit, thermometer code	12 bit (11.46 effective bit), binary code
Tuning Range (Step)	300 kHz – 3 MHz (42 kHz)	300 kHz – 1 MHz (100 kHz)	205 Hz – 850 kHz (302 Hz)
Power Consumption	6.9 mW	0.5 mW	0.5 mW
Distortion Levels	THD = -60 dB @ 10 kHz, 1 V_{p-p}	IIP3 = 25 dBm	THD = -70 dB @ 10 kHz, 1.5 V_{p-p}
Input Noise	658 nV/√Hz @ 10 kHz	250 nV/√Hz @ 10 kHz	215.2 nV/√Hz @ 10 kHz
Silicon Area	0.0493 mm^2	0.14 mm^2	0.087 mm^2