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Abstract 
The Steered Response Power with phase transform 

(SRP-PHAT) is one of the most employed 

techniques for Direction of Arrival (DOA) 

estimation with microphone arrays, but its 

computational complexity grows when the search 

space increases. To solve this issue, we propose the 

use of Neural Networks (NN) to obtain the DOA 

from low-resolution SRP-PHAT power maps. 

Introduction 

Due its robustness against acoustical conditions as 

reverberation or noise, the Steered Response Power 

(SRP) is one of the most employed technique for 

Direction of Arrival (DOA) estimation and Sound 

Source Localization (SSL) with microphone arrays. 

In [1], [2] the SRP-PHAT was introduced, using the 

phase transform to make the algorithm more robust 

against reverberation [3] and presenting a new 

formulation of the SRP in terms of the Generalized 

Cross-Correlation (GCC) functions. With this new 

formulation, most of the computational complexity 

is in the computation of the GCCs, which is 

common to all the search directions, so the number 

of operations grows slower with the search space. 

Despite this, the complexity may still be an issue for 

very large search spaces, especially when they have 

two, or even three, dimensions. 

In the field of microphone arrays, despite widely 

used for blind source separation, Neural Networks 

(NNs) have been barely employed for DOA 

estimation yet. [4] propose solving the DOA 

estimation as a classification problem using the 

GCCs as the inputs of a NN which have an output 

for each point in the search space. This approach 

has the same problem as the SRP-PHAT algorithm: 

increasing the number of points of the search space 

(to improve the precision or to add new dimensions) 

increase its complexity, as a higher number of 

outputs are needed and the classification becomes 

harder. 

To solve this problem, we propose to formulate the 

DOA estimation as a regression problem. Because 

[4] claims that they obtained worse results with 

regression than with classification, we use low 

resolution SRP-PHAT power maps as input instead 

of GCCs. Due to the good amount of existing 

research on the implementation of NN in FPGAs 

[5], [6], and even the existence of chips designed for 

real-time NN inference commercially available [7], 

we believe that, if the power map resolution is low 

enough, it could reduce the computational 

complexity of the entire system. 

Obtaining a complete dataset with array recordings 

of a room would be too complicated and time 

consuming and may be unsuitable for some plug-

and-play applications, so the training stage is a 

critical point of these techniques. In [4], the network 

is trained with simulated signals obtained for 

different room acoustical properties and get good 

results when they test it with real recordings. 

Alternatively, we propose training the NN with real 

recordings done in the room where the array will be 

used. As getting a perfect labelled dataset is 

unfeasible, we use a high-resolution SRP-PHAT 

power map to label it.  

The SRP-PHAT algorithm 
The Steered Response Power (SRP) of a sensor 

array is defined as the power of the output of an 

array steered to the desired direction using a delay-

and-sum beamformer. It can be written in terms of 

the Cross-Correlation functions between sensors as: 

𝑃(𝜽) = ∑ ∑ 𝑅𝑛𝑚(Δ𝜏𝑛𝑚(𝜽))

𝑁−1

𝑚=0

𝑁−1

𝑛=0

 

Where N is the number of sensors, θ is the desired 

direction, Rnm is the Cross-Correlation Function 

between the sensors n and m, and Δτnm(θ) is the time 

difference of arrival between the same sensors. 
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The Cross-Correlation Functions can be substituted 

by the Generalized Cross-Correlation Functions 

(GCCs) [8] in equivalence to substitute the delay-

and-sum beamformer by a filter-and-sum 

beamformer: 

𝑅𝑛𝑚(𝜏) =
1

2𝜋
∫ 𝛹𝑛𝑚(𝜔)𝑋𝑛(𝜔)𝑋𝑚

∗ (𝜔)𝑒𝑗𝜔𝑡𝑑𝜔
+∞

−∞

 

Where 𝑋𝑛(𝜔) is the Fourier Transform of the signal 

received at the sensor n, * is the complex conjugate 

operator, 𝑗 = √−1, and 𝛹𝑛𝑚(𝜔) is a weighting 

function. The most common weighting function in 

microphone arrays is the PHAT transform: 

𝛹𝑛𝑚(𝜔) =
1

|𝑋𝑛(𝜔)𝑋𝑚
∗ (𝜔)|

 

To perform a DOA estimation using the SRP-PHAT 

algorithm we must compute 𝑃(𝜽) for a fine enough 

grid of directions 𝜽. Figure 1 shows a high-

resolution SRP-PHAT power map whose maximum 

would be lost by an 8x8 power map. 

MultiLayer Perceptron (MLP) 
A MultiLayer Perceptron (MLP) is one of the most 

basic NNs. The output of a dense, i.e. fully 

connected, layer with D inputs and H perceptrons is: 

𝒐 = 𝑓(𝐖𝑇𝐚 + 𝐛) 

Where T denotes transposition, a = (a1, …, aD)
T
 is a 

vector with the inputs of the layer, W is a DxH 

matrix with the weight of each perceptron for each 

input, b = (b1, …, bH)
T
 is a vector with the bias of 

each perceptron, and 𝑓(𝑥) is a nonlinear function 

such as the relu function: 𝑓(𝑥) = max(𝑥, 0). 

The parameters of the MLP network, i.e. W and b, 

are optimized using backward propagation 

techniques to minimize an error function. Several 

regularization techniques, such as the dropout [9], 

has been proposed to improve the optimization, i.e. 

training stage, avoiding the MLP to overfit its 

parameters to the training dataset obtaining worse 

results with the test dataset. 

Proposed DOA estimator 
Network architecture and training 

In order to reduce the computational complexity of 

the SRP-PHAT algorithm we propose to reduce the 

number of directions where 𝑃(𝜽) is computed and 

infer the DOA estimation using a neural network 

instead of looking for the maxima of the SRP-

PHAT function. Specifically, we use a MLP with 

two hidden layers with 128 perceptrons. As we have 

focused in 2D DOA estimation with a circular 

microphone array, our output layer has only 2 

perceptrons that represent the DOA estimation in 

spherical coordinates. 

We train the network using the ADELTA gradient 

optimizer [10] implemented in Keras [11] using as 

error function the mean square angular distance. To 

reduce the overfitting, we use the dropout 

regularization technique in the hidden layers. 

Dataset 

To create the dataset to train the network, we placed 

the array, a miniDSP UMA-8 with 6 MEMS 

microphones equispaced in a circumference of 

approximately 90 mm in diameter, in the center of a 

conference table. With this configuration, we 

perform a recording of 5 minutes at 44.1 kHz 

emitting white noise through the speaker of a 

smartphone while walking around the table at 

different heights. 

We divide the recording in frames of 1024 samples 

with an overlap of 512 samples and apply the SRP-

PHAT algorithm to get 2 power maps, the first with 

high resolution (90x360) and the second with a 

lower one. We use the former to obtain the position 

of the sound source and the last as input of the 

network. Finally, we randomly permuted the frames 

and took 18,000 for training and 6,000 for test. 

Results 
Table I shows the angular Root Mean Square Error 

(RMSE) in the test dataset for different power map 

resolutions. It can be seen that the DOA inferred by 

the MLP from a power map of resolution 8x8 has an 

error very similar to taking the maximum of a 32x32 

power map, but using 16 times fewer evaluations of 

the SRP-PHAT functional. Figure 2 shows the 8x8 

power map corresponding to Figure 1. Despite the 

real DOA is not captured, the MLP is able to 

estimate the DOA estimation with an error of only 

1.7º. 

Conclusions 
This work can be seen as a full low-complexity NN-

based DOA estimation framework. In a first step, 

the user records some minutes of white noise. 



Revista “Jornada de Jóvenes Investigadores del I3A”, vol. 6 (Actas de la VII Jornada de Jóvenes Investigadores del I3A - 8 de junio de 

2018). ISSN 2341-4790. 

Secondly, a non real-time NN training process is 

performed. Finally, the DOA is obtained by real-

time inference from low-resolution SRP-PHAT 

power maps. 
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Fig. 1. High-resolution SRP-PHAT power map. The 

red cross indicate the maximum and the black 

circles represent an 8x8 equispaced grid. 

 

 
Fig. 2. Low-resolution SRP-PHAT power map. The 

red cross indicate the maximum of the high-

resolution map (Figure 1), the black * is the DOA 

inferred by the MLP and the blue square the 

maximum of the low-resolution power map. 
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Table I. Root Mean Square Error (RMSE) 

Θ resolution Φ resolution RMSE maximum (deg) RMSE MLP (deg) 

32 32 4.6021 4.0488 

16 16 12.6915 4.0303 

8 8 29.4648 4.6960 

4 4 41.2628 5.7129 

 


