IX JORNADA DE JÓVENES INVESTIGADORES DEL 13A

Data Learning of Fluid Dynamics for Physically Informed Digital Twins

Beatriz Moya¹, Icíar Alfaro¹, David González¹, Francisco Chinesta², Elías Cueto¹

¹ Applied Mechanics and Bioengineering (AMB), Instituto de Investigación en Ingeniería de Aragón (I3A) ²ESI Chair ENSAM ParisTech

OBJECTIVES

Develop an intelligent living digital twin able to learn fluid dynamics with artificial intelligence.

- Provides augmented information in manipulation of fluids.
- Application in robotics reasoning.

What is a living digital twin?

A living digital twin emulates the behaviour of a real object or process and interacts with the real world in realtime.

HYPOTHESIS

Black box models deviate from ground truth in long term simulations.

Physical rigour ensures higher temporal stability.

METHOD

DATA ACQUISITION

Tracking of the features of the real container and the fluid.

RECOGNITION

Random forest classifyier trained for fluid recognition.

SIMULATION

Machine learning based on GENERIC formalism to ensure thermodynamic consistency of the model.

FREE SURFACE DETECTION

Optimal perception of free surface from binarized image.

FLUID RECOGNITION

Random forest over projection of data into 3D manifold.

LEARNING DYNAMICS

[GENERIC] Learning dynamics from coarse description of the evolution of Energy E and Entropy S in terms of state variables z:

$$\frac{d\mathbf{z}}{dt} = \mathbf{L} \frac{\partial E}{\partial \mathbf{z}} + \mathbf{M} \frac{\partial S}{\partial \mathbf{z}}$$

RESULTS

- ✓ Fluid recognition with pseudo-experimental data: 95.93% global accuracy.
- Learning of Newtonian and non-Newtonian fluids.
- ✓ Digital emulation of the twin: mean deviation up to 1.74 mm.

FUTURE RESEARCH LINES

Development of a hybrid twin able to learn corrections from free surface data, such us new material behaviour.

LINK TO VIDEO

ÖTTINGER H.C., Beyond Equilibrium Thermodynamics (Wiley, 2005) MOYA B., GONZALEZ D., ALFARO I., CHINESTA F., CUETO E. Physically sound. self-learning digital twins for sloshing fluids. Plos One June 16, 2020

