Data Exfiltration in IoT Protocols

Daniel Uroz ¹ Ricardo J. Rodríguez ¹

¹Distributed Computing Group (DisCo), Universidad de Zaragoza, Spain

IX Jornada de Jóvenes Investigadores del I3A

Introduction

Data exfiltration: unauthorized transfer of information

- Adversaries mask transferences using covert channel techniques to bypass defense mechanism (such as a firewall)
- Covert channel: any communication to transfer information violating the systems security policy

Internet of Things (IoT) networks: sensors, objects and smart nodes capable of communicating with each other without human intervention

- Generate continuous information, lately sent to an outside network responsible of recollection and processing
- Rely on **IoT protocols**, specially design for constrained devices

Characteristics of Protocol Exfiltration

- 1. Packet type: defined by a protocol, tailored for a specific purpose:
 - Payload: data able to carry in a single packet
 - Overhead: every byte not representing the actual data to exfiltrate
- 2. **Transport**: connectionless or connection-oriented transport protocols
- 3. **Error detection**: checksum redundancy mechanism to spot errors on received data

Studied Protocols

Traditional Protocols

- Internet Control Message Protocol (ICMP)
- Network Time Protocol (NTP)
- Domain Name System (DNS)

IoT Protocols

- Constrained Application Protocol (CoAP)
- Message Queuing Telemetry Transport (MQTT)
- Advanced Message Queuing Protocol (AMQP)

Experimentation

We developed the Python library chiton to exfiltrate data encapsulating the data into IoT protocol's packets:

https://github.com/duroz/chiton

We tested how IoT protocols perform for different types of data varying from 1, 10, 100, 1000, 10000 to 100000 KiBs

Results and Discussion

The results are plotted in Figure 1. A big time difference is shown between CoAP protocol and the MQTT and AMQP protocols, motivated by:

- The CoAP protocol needs to send more packets for the same amount of data. We kept IP packets under the 1280 bytes length limit, due to the TCP/IP network. However, there is a lack of knowledge about the maximum transmission unit used in the network
- Depending of the network configuration, nodes may apply more priority to TCP traffic over UDP

Figure 1. Comparison of data exfiltration times by IoT protocol

Conclusions

- First study to extensively compare these IoT protocols from the point of view of data exfiltration, focusing on characteristics such as overhead and useful payload for every available packet
- We empirically measure and compare the time necessary to exfiltrate files of different data size

References

[1] Daniel Uroz.
Data Exfiltration in IoT Protocols.
Master's Thesis, University of León, Spain, September 2020.
Online; https://webdiis.unizar.es/~ricardo/files/TFMs/
Exfiltracion-Datos-Protocolos-IoT_TFM_ULE.pdf. Accessed on December 10, 2020.