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We take advantage of two inductive biases [1]:

Geometric structure: We are able to exploit the geometric constraints 
of the system by performing computations over graphs based on the 
nodal connectivities. This enables the algorithm to learn more complex 
interactions, even in non-Euclidean manifolds [2]. 

Metriplectic structure: The time prediction is achieved via a 
thermodynamically consistent integrator based on the GENERIC 
formalism [3]. It divides the system into conservative dynamics, related 
to Hamiltonian mechanics, and dissipative dynamics.

METHODS
Computational modelling has become a standard tool in a wide variety 
of scientific fields, in order to simulate reality phenomena and predict 
its future behaviour.

The aim of this work is to learn physical simulators with the correct 
mathematical structure using graph-based deep learning.
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RESULTS

      The physical  
magnitudes of the 
domain are converted 
to vertex (nodal 
properties) and edge 
(interactions) 
feature vectors.

Physical system Graph:

Vertex features
Edge features

Global featuresState vector

Graph creation

      We use an encoder to 
embed the feature vectors 
into higher-dimensional 
latent vectors.

      The decoder computes for each 
particle the GENERIC operators and 
potentials. The symmetric and 
positive semi-definite conditions are 
imposed by construction.

Boundary 
conditions

Degeneracy conditions: 
Ensure the fullfulment of 
the first and second laws 
of thermodynamics.

      The processor computes the 
update of the latent vectors based 
on the node connectivity in a 
message passing scheme [4].

      The state vector is updated using the 
GENERIC equation and a simple forward-
Euler scheme.

: MLPs with shared parameters for all nodes
: Aggregation function, permutation invariant (sum)
: Processor sequential cores with residual connections 

  ,   ,  

Two multiparametric fluid and solid mechanic examples are tested with the proposed 
method in a rollout scheme. The algorithm is compared in an ablation study with two 
previous methods: GNN [5] (no metriplectic bias) and SPNN [6] (no geometric bias).

Couette flow: Olrody-B fluid with varying Reynolds and Weissemberg numbers.

 

 

Bending beam: Viscoelastic solid with varying load modulus and position. 

We have presented a method to predict physics from 
data with a graph-based deep learning algorithm, 
which takes advantage of the geometric properties of 
the system.

The addition of the correct metriplectic structure also 
ensures the thermodynamical consistency of the 
results, satisfying the energy conservation and entropy 
inequality for dissipative systems.

This combined method of both inductive biases 
outperform the existing state of the art works, 
achieving consistent relative errors within 1% in 
rollout test simulations. 

CONCLUSIONS
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