Ammonia Oxidation at High Pressure as a Carbon Free Fuel ## X JORNADA DE JÓVENES INVESTIGADORES DEL 13A Pedro García-Ruiz, Miguel Abengochea, Daniel Castejon, Rafael Bilbao, María Abián, María U. Alzueta, Department of Chemical and Environmental Engineering. University of Zaragoza. 50018-Zaragoza, Spain p.garcia@unizar.es Departamento de Ingeniería Química y Tecnologías del Medio Ambiente Universidad Zaragoza Objective: Increasing knowledge on the conversion of NH₃ at high pressures, as well as its mixtures with CH₄ and H₂ under different operating conditions Advantages: NH_3 -CH₄ can emit less NOx than a NH_3 -air blend [7] and higher ratio of H_2 in NH_3 - H_2 mixtures improves its reactivity without effects in its emissions [8]. ### **BACKGROUND AND OBJECTIVES** Ammonia oxidation Turning NH₃ into a suitable CO₂ emissions Turning NH₃ into a suitable alternative fuel Mixed with H₂ [5] and CH₄ [6] enhancing its combustion characteristics Security of energy supply and existing facilities for its transportation. Global chemical reactions for the formation of N_2 and NO_x . $$NH_{3} + \frac{3}{4}O_{2} \rightleftharpoons \frac{1}{2}N_{2} + \frac{3}{2}H_{2}O \quad r1$$ $$NH_{3} + \frac{5}{4}O_{2} \rightleftharpoons NO + \frac{3}{2}H_{2}O \quad r2$$ Study of NH₃ as an alternative fuel for several applications including energy storage, transportation and gas turbines [1, 2] Disadvantage: nitrogen oxides (NO_x) can be formed from NH₃ oxidation [4] #### **EXPERIMENTAL RESULTS AT HIGH PRESSURE** **Conditions:** 40 bar of pressure, temperatures from 500°C to 900°C, gas flow = 1000 mln/min, residence time = 0.524 min and $^{(1)}$ Lambda (λ) = 3. Case A) 1000 ppm of pure NH₃: oxidation reaction of NH₃ started at 875°C. **Case B) & C)** NH_3 - CH_4 and NH_3 - H_2 mixtures (1000 ppm for each component): oxidation reaction of NH_3 started at 530° C. $$(1) \lambda = \left[\frac{O_{2_{feed}}}{O_{2_{stoic}}} \right]$$ **Figure 1:** case A (pure NH₃) most of ammonia does not react more than 10% at 900 °C, case B (NH₃-CH₄ mixture) full conversion of NH₃ approximately at 600°C and case C (NH₃-H₂ mixture) fully reaction at 850°C. The oxidation reaction of NH₃ at 40 bar started at 875°C for pure NH₃ and at 530°C for NH₃ mixtures for the selected conditions. **Figure 2:** case B (NH₃-CH₄ mixture), produced 212 ppm of N_2O at 570°C that is approximately twice as much N_2O produced compared to case C (NH₃-H₂ mixture), which produce 61 ppm of N_2O at the same temperature. ## Methodology #### CONCLUSIONS - ♦ NH₃ oxidation starts at lower temperatures, about 355°C before, for both NH₃-CH₄ and NH₃-H₂ (cases B and C) mixtures compare to pure NH₃ (case A). - ❖ Mixing NH₃ with CH₄ or H₂ improves reaction behaviour, consuming practically all the NH₃ at temperatures at which the oxidation of pure NH₃ has not yet started, but this mixtures oxidation present N₂O emissions. ## References - [1]. VALERA-MEDINA, A., XIAO, H., OWEN-JONES, M., DAVID, W. I.F. and BOWEN, P. J. Ammonia for power. *Progress in Energy and Combustion Science*. 2018. Vol. 69, p. 63–102. Available from: DOI 10.1016/j.pecs.2018.07.001. - [2]. VALERA-MEDINA, A., MORRIS, S., RUNYON, J., PUGH, D. G., MARSH, R., BEASLEY, P. and HUGHES, T. Ammonia, Methane and Hydrogen for Gas Turbines. *Energy Procedia*. 2015. Vol. 75, p. 118–123. Available from: DOI 10.1016/j.egypro.2015.07.205. - [3]. KOBAYASHI, H. Ammonia Combustion for Energy System. *Japan-Norway Hydrogen Seminar*. 2017. - [4]. GLARBORG, P., MILLER, J. A., RUSCIC, B. and KLIPPENSTEIN, S. J. Modelling nitrogen chemistry in combustion. *Progress in Energy and Combustion Science*. 2018. Vol. 67, p. 31–68. Available from: DOI 10.1016/j.pecs.2018.01.002. - [5]. DA ROCHA, R. C., COSTA, M. and BAI, X. S. Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission. *Fuel.* 2019. Vol. 246, p. 24–33. Available from: DOI 10.1016/j.fuel.2019.02.102. - [6]. XIAO, H., VALERA-MEDINA, A., MARSH, R. and BOWEN, P. J. Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions. *Fuel.* 2017. Vol. 196, p. 344–351. Available from: DOI 10.1016/j.fuel.2017.01.095. - [7]. OKAFOR, E. C., SOMARATHNE, K. D., KUNKUMA, A., RATTHANAN, R., HAYAKAWA, A., KUDO, T., KURATA, O., IKI, N., TSUJIMURA, T., FURUTANI, H. and KOBAYASHI, H. Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia. *Combustion and Flame*. 2020. Vol. 211, p. 406–416. Available from: DOI 10.1016/j.combustflame.2019.10.012. - [8]. HE, X., SHU, B., NASCIMENTO, D., MOSHAMMER, K., COSTA, M. and FERNANDES, R. X. Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures. *Combustion and Flame*. 2019. Vol. 206, p. 189–200. Available from: DOI 10.1016/j.combustflame.2019.04.050. Acknowledgements: The authors acknowledge the funding from the Aragón Government (Ref. T22_17R), co-funded by FEDER 2014-2020 "Construyendo Europa desde Aragón", and to MINECO and FEDER (Project RTI2018-098856-B-I00: Study of the oxidation of NH₃ and its mixtures with CH₄/H₂, evaluating the impact on pollutant) and MINECO PRE2019-090162 for financial support.