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Abstract  
Identifiability is an essential property of a dynamical 
model whose study should be addressed before 
performing any parameter estimation procedure. In 
this work, we study the structural identifiability of a 
heat transfer system by making use of the local state 
isomorphism theorem for two scenarios based on the 
available experimental measurements.  

Introduction  
Reducing energy consumption is one of the main 
problems to be solved by human beings. Most of the 
energy consumed is linked to thermal processes. One 
of the keys to reducing energy consumption is to 
improve the efficiency of these systems. In this sense, 
building a dynamical model is a useful tool to 
improve the efficiency. The building of a model 
aimed at energy improvement is a critical aspect that 
depends on both the degree of detail and the 
information used in the construction process. The 
optimal solution is probably a hybrid modeling 
between models based on basic principles whose 
parameters are characterized from observations of 
the system. This modeling approach is called grey-
box (see [1]-[2]) and requires identification 
procedures in order to estimate the set of partially or 
totally unknown parameters. Both if the parameters 
to be estimated have physical significance, or if the 
model is to be used to predict the dynamics of state 
variables that cannot be directly measured, it is 
essential to perform a preliminary identifiability 
analysis of the proposed parametric structure. 
Despite the importance of identifiability, the analysis 
of this property has been largely overlooked in the 
vast majority of works on dynamic modeling. 
 
Dynamical Model 
The presented grey-box model is based on the 
thermal-electrical analogy. Besides, the model 
adopts a lumped-parameter approach. The thermal 
system to be modeled is composed of two main 
components, each one of them modeled by the 
thermal capacitors 𝐶𝐶1 and 𝐶𝐶2. The heating power, 𝑝𝑝, 
is generated directly on capacitor 𝐶𝐶1. The model also 

includes a temperature sensor, whose dynamics is not 
negligible, and it is modeled by an additional 
capacitor, 𝐶𝐶3 (see Fig.1). The state variables selected 
for the model are the temperatures of the three 
elements, 

𝑥𝑥 =  (𝑇𝑇1 𝑇𝑇2 𝑇𝑇3)T, ( 1) 

and, the corresponding state-space representation is  

𝑥̇𝑥 =  𝑓𝑓𝜃𝜃(𝑥𝑥,𝑢𝑢) = 

=  

⎝

⎜
⎜
⎜
⎛

−
𝑇𝑇1
𝐶𝐶1
�

1
𝑅𝑅1

+
1
𝑅𝑅2
� +

𝑇𝑇2
𝐶𝐶1𝑅𝑅2

+
𝑝𝑝
𝐶𝐶1

+
𝑇𝑇amb

𝐶𝐶1𝑅𝑅1
𝑇𝑇1
𝐶𝐶2𝑅𝑅2

−
𝑇𝑇2
𝐶𝐶2
�

1
𝑅𝑅2

+
1
𝑅𝑅3

+
1
𝑅𝑅4
� +

𝑇𝑇3
𝐶𝐶2𝑅𝑅4

+
𝑇𝑇amb

𝐶𝐶2𝑅𝑅3
𝑇𝑇2
𝐶𝐶3𝑅𝑅4

−
𝑇𝑇3

𝐶𝐶3𝑅𝑅4 ⎠

⎟
⎟
⎟
⎞

 

(2) 

Note that the dynamical model obtained, despite 
being linear with respect to the state variables and the 
input, is nonlinear with respect to the parameters.  
 
Identifiability Analysis 
Structural identifiability is a theoretical property that 
depends exclusively on the parameterization of the 
model. There are several definitions of identifiability 
in the literature [3]-[5]. Let us consider the previously 
presented model as a general input-affine dynamical 
model, 

Σ𝜃𝜃:�
𝑥̇𝑥(𝑡𝑡) =  𝜙𝜙𝜃𝜃�𝑥𝑥(𝑡𝑡)� + 𝑔𝑔𝜃𝜃�𝑥𝑥(𝑡𝑡)�𝑢𝑢(𝑡𝑡)

𝑦𝑦(𝑡𝑡) = ℎ𝜃𝜃�𝑥𝑥(𝑡𝑡)�
𝑥𝑥(𝑡𝑡0) =  𝑥𝑥0(𝜃𝜃)

 (3) 

 
The dynamical system Σ𝜃𝜃 and the initial state 
𝑥𝑥0(𝜃𝜃) define an input-output map of the form:  
 

𝐼𝐼𝐼𝐼�Σ𝜃𝜃,𝑥𝑥0(𝜃𝜃)� = {𝑢𝑢(𝑡𝑡)} ⟼ {𝑦𝑦(𝑡𝑡)}, 𝑡𝑡 ∈  �𝑡𝑡0, 𝑡𝑡𝑓𝑓�,  (4) 

such that for each admissible input, the system 
returns an output. The system is said to be globally 
structurally identifiable (g.s.i.) if there is a one-to-one 
relationship between the set of possible values of the 
parameter vector and the set of possible input-output 
maps. That is, if it is satisfied that 
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𝐼𝐼𝐼𝐼�Σ𝜃𝜃,𝑥𝑥0(𝜃𝜃)� = 𝐼𝐼𝐼𝐼�Σ𝜃𝜃� ,𝑥𝑥0�𝜃𝜃���
 ⇔ 𝜃𝜃 = 𝜃𝜃� . (5) 

There are several methods proposed in the literature 
to assess identifiability [5]-[9]. In this paper we use 
the method of the local state isomorphism. This 
method postulates that if it is possible to find a 
diffeomorphism, 𝜑𝜑, between the state spaces of two 
different representations of the system, then the 
theorem establishes that both representations 
correspond to the same input-output map. If, 
furthermore, the existence of the diffeomorphism is 
conditioned by an equality relation between the 
parametric sets, then the system is g.s.i.. This method 
is applied for two cases, in one of them the state can 
be fully measured, while in the other only one state 
variable can be measured. 
 

A. Case I. Complete state measurement  
Assuming that all state variables can be measured, 
the resolution of the diffeomorphism gives rise to a 
series of relations1 of the type 𝛼𝛼𝑖𝑖(𝜃𝜃) = 𝛼𝛼𝑖𝑖�𝜃𝜃��  
between the parameters. These relations are the 
following: 

𝛼𝛼1(𝜃𝜃) = 𝐵𝐵1 (6) 
𝛼𝛼2(𝜃𝜃) = 𝐵𝐵1(𝐺𝐺1 + 𝐺𝐺2) (7) 

𝛼𝛼3(𝜃𝜃) = 𝐵𝐵1𝐺𝐺2 (8) 
𝛼𝛼4(𝜃𝜃) = 𝐵𝐵2𝐺𝐺2 (9) 
𝛼𝛼5(𝜃𝜃) = 𝐵𝐵2𝐺𝐺4 (10) 
𝛼𝛼6(𝜃𝜃) = 𝐵𝐵2(𝐺𝐺2 + 𝐺𝐺3 + 𝐺𝐺4) (11) 
𝛼𝛼7(𝜃𝜃) = 𝐵𝐵3𝐺𝐺4 (12) 

 
The set of equations imply that 𝜃𝜃 = 𝜃𝜃� . Therefore, the 
model is g.s.i. if the complete state is measured. 
 

B. Case II. Partial state measurement  
In practice it is not always possible to measure the 
complete state. As an example, we assume that we 
only have measurements of 𝑇𝑇1. The resolution of this 
diffeomorphism gives rise to a set of relations of the 
type 𝛽𝛽𝑖𝑖(𝜃𝜃) = 𝛽𝛽𝑖𝑖�𝜃𝜃��, as follows: 

𝛽𝛽1(𝜃𝜃) = 𝐵𝐵1 (12) 
𝛽𝛽2(𝜃𝜃) = 𝐵𝐵1(𝐺𝐺1 + 𝐺𝐺2) (14) 

𝛽𝛽3(𝜃𝜃) = 𝐵𝐵1𝐵𝐵2𝐺𝐺22 (15) 
𝛽𝛽4(𝜃𝜃) = 𝐵𝐵2(𝐺𝐺2 + 𝐺𝐺3 + 𝐺𝐺4) (16) 
𝛽𝛽5(𝜃𝜃) = 𝐵𝐵2𝐺𝐺4 (17) 
𝛽𝛽6(𝜃𝜃) = 𝐵𝐵3𝐺𝐺4 (18) 

  

                                                      

 

1 Note that for algebraic simplicity, the inverses of resistances 
and capacitances are used, that is, 𝐺𝐺𝑖𝑖 =  𝑅𝑅𝑖𝑖−1 and 𝐵𝐵𝑖𝑖 =  𝐶𝐶𝑖𝑖−1. 

In this case, the set of equations does not imply 𝜃𝜃 = 𝜃𝜃� . 
Thus, the model is not g.s.i. measuring only 𝑇𝑇1. 
 
Further Results and Discussion  

A. Case I. Complete state measurement  
In the case of measuring the complete state, the 
identifiability analysis shows that the proposed 
model is identifiable. Therefore, a parametric 
identification process is proposed to determine the 
value of the unknown parameters of the model. In 
this work we have used as a cost function a weighted 
sum of the root mean squared errors of the three 
temperatures. MATLAB mathematical software is 
used to solve the optimization problem. The main 
numerical results of the parametric identification 
process are included in Tables I and II. The 
adjustment of temperatures is shown in Figs. 2, 3 and 
4. 
 

B. Case II. Partial state measurement  
In the case of measuring only one state variable the 
problem of parametric identification will be 
approached from another perspective. In this regard, 
it is intended to show the identifiability result 
obtained for the case B. To do this, we search two 
different parametric sets that give rise to the same 
input-output map for the measured variable. The 
numerical values of these parameters are listed in 
Table III. The simulation results of the model 
dynamics for the two sets of different parameters, 𝜃𝜃A 
and 𝜃𝜃B, are represented in Figs. 5, 6 and 7.  

Conclusions 
In this work we have presented an identifiability 
study of a heat transfer system for two different 
situations. In the first situation we have shown that 
the system is identifiable if all temperatures are 
measured. This ensures the existence of a unique 
parametric set for each possible dynamics of the 
system. In the second scenario, we show that the 
system is not identifiable if only the temperature 𝑇𝑇1 
is measured. A parametric fit can lead to a model that 
correctly reflects the measured temperature 
dynamics, but there is no guarantee that the estimated 
parameters make physical sense. 
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Fig.  1. Schematic representation of the lumped-parameter 
structure 

Fig.  2. Temporal evolution of temperature 𝑇𝑇1 

 

 

 

 

Fig.  3. Temporal evolution of temperature 𝑻𝑻𝟐𝟐 

Fig.  4. Temporal evolution of temperature 𝑻𝑻𝟑𝟑 

Fig.  6. Temporal evolution of the simulated temperature 𝑇𝑇2   
for the parametric sets 𝜽𝜽A and 𝜽𝜽B 

Fig.  5. Temporal evolution of the simulated temperature 𝑇𝑇1   
for the parametric sets 𝜽𝜽A and 𝜽𝜽B 
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Table I. Parameter Identification Results. Errors 

Temperature RMSE (ºC) 𝑇𝑇mean(ºC) 
RMSE
𝑇𝑇mean

 (%) 

𝑇𝑇1 2.15 105.96 2.03 
𝑇𝑇2 2.06 88.5 2.33 
𝑇𝑇3 1.89 88.65 2.13 

Table III. Numerical Values of Parameter Sets 𝜽𝜽A and 𝜽𝜽B  

Parameter  Inital value, 𝜃𝜃0  Optimum value, 𝜃𝜃∗ 

𝑅𝑅1 1 K/W 1.2 K/W 
𝑅𝑅2 1 K/W 0.835 K/W 
𝑅𝑅3 1 K/W 4.35 K/W 
𝑅𝑅4 1 K/W 0.1 K/W 
𝐶𝐶1 350 J/K 380 J/K 
𝐶𝐶2 180 J/K 213.4 J/K 
𝐶𝐶3 0.9 J/K 0.995 J/K 

 Table II. Parameter Identification Results. Parameter Set 

Parameter 𝜃𝜃A 𝜃𝜃B Units 

𝑅𝑅1 1 -0.3008 K/W 
𝑅𝑅2 0.5 0.1581 K/W 
𝑅𝑅3 1 0.0442 K/W 

𝑅𝑅4 0.1 0.01 K/W 

𝐶𝐶1 300 300 J/K 

𝐶𝐶2 150 1500 J/K 

𝐶𝐶3 1 10 J/K 

Fig.  7. Temporal evolution of the simulated temperature 𝑻𝑻𝟑𝟑   
for the parametric sets 𝜽𝜽A and 𝜽𝜽B 
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