CO₂ and H₂O adsorption-desorption cycles for multifunctional Ni-Fe based catalyst in the production of Synthetic Natural Gas

V.D Mercader*, A. Sanz-Martínez, P. Durán, E. Francés, J. Herguido, J.A. Peña

Grupo de Catálisis, Separaciones Moleculares e Ingeniería de Reactores (CREG) Instituto de Investigación en Ingeniería de Aragón (I3A) Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain.

Tel. +34-976762707, e-mail: <u>vmercader@unizar.es</u>

Abstract

A study of the affinity of lab-made multifunctional catalysts to adsorb-desorb CO_2 , H_2 and H_2O has been carried out by thermogravimetry in the *Hydrogen Technologies Laboratory* of I3A. Higher CO_2 affinities were showed by multifunctional catalyst in comparison with the nonfunctionalized FeNi catalyst.

Introduction

Power to Gas (PtG) technologies has been proposed as an interesting alternative to generate an energy vector able to cover the energy intermittency of renewables [5]. The surplus electricity from renewables could be used to generate green hydrogen from water electrolysis [5]. That green hydrogen would be combined with a concentrated CO₂ flow (e.g. biogas $-30\%^{v}$ CO₂ and $70\%^{v}$ CH₄- through Sabatier reaction (r.1), generating a stream rich in CH₄[4]. Also, the resulting CH₄ (so called *Synthetic* Natural Gas, SNG) or even upgraded biogas could be injected directly to the preexisting natural gas network. Thus, PtG technologies are able to provide safety an energy vector easy to carry and store, whereas H₂ storage and transportation is a challenge with the actual technology limitations. For example, preexisting natural gas network is limited by the fragility of materials in presence of H₂, the actual natural gas network could transport a maximum concentration 10% v H₂ [1]. This also applies for domestic burners for which a limit in the proportion of H₂ is still present. However, SNG could be used to supply energy to the electric network during the intermittent periods of renewables.

$$\mathrm{CO}_2 + 4\mathrm{H}_2 \rightleftharpoons \mathrm{CH}_4 + 2\mathrm{H}_2\mathrm{O} \qquad (r.1)$$

The inclusion of an alkali or an alkaline group in a nickel-based catalyst could improve the CO_2 affinity of the catalyst, creating chemical bonds between the basic groups and CO_2 [2]. As result, the interaction between the fixed CO_2 with H₂ could be improved. Thus, the selectivity and conversion to methane

might increase. In order to study the previously mentioned assumptions, three nickel-based catalysts supported on gamma alumina were synthesized including an alkali or alkaline earth in their composition. Resulting catalysts were named "NaNi" (10^{wt}% Na, 10^{wt}% Ni), "NaNiFe" (10^{wt}% Na, 7.5^{wt.}%Ni, 2.5^{wt.}%Fe) and "CaNiFe" (10^{wt}% Ca, 7.5^{wt.}%Ni, 2.5^{wt.}% Fe). Benefits of blending Fe with Ni in methanation catalysts were showed in previous CREG studies [3]. Thermogravimetric analysis was selected as characterization method for CO₂, H₂ and H₂O adsorption-desorption behavior. In such studies, the catalyst is exposed to a gas flow. Its surface interacts with the gas species, generating bonds between the gas molecules and the catalyst surface. As result, an increase in the catalyst mass is generated and registered by the TGA device.

Experimental

The multifunctional catalysts were synthesized by incipient wetness impregnation from their nitrate or carbonate metallic precursors. In addition, a commercial γ -Al₂O₃ (200 m²/g, *Puralox, SASOL*) was selected as support material for the catalysts.

A STA 449 F3 Jupiter (Netzsch) was used for the experiments. A 20.0±0.1 mg sample of each catalyst was introduced in the STA chamber on a crucible plate. The adsorption-desorption cycles included the following steps: a) Preconditioning: the catalysts were heated at 500 °C in inert atmosphere for 1h. b) Activation of the catalyst with a 50%^v flow of H₂ for 1 hour. c) Decreasing the temperature until 400 °C and keeping it constant for 1 hour in inert atmosphere. The objective of the adsorptiondesorption cycles is to spot the interaction of different gaseous species in the adsorption on the catalyst. Adsorption-desorption sequence: d) The catalyst is exposed to a gas flow of 40%^v of CO₂ diluted in inert. Later, a stream with 10 %^v of H₂O is added to the previously CO_2 flow. Later the CO_2 is removed from the gas inlet, remaining only the 10 %^v of H₂O flow. Following, the 40%^v of CO₂ is reintroduced in the inlet along with the water.

Revista "Jornada de Jóvenes Investigadores del I3A", vol. 10 (Actas de la XI Jornada de Jóvenes Investigadores del I3A – 16 de junio de 2022). ISSN 2341-4790.

Subsequently, the H₂O is removed from the gas flow, keeping only the $40\%^{v}$ of CO₂ as inlet. Finally, the desorption (regeneration) step was carried out with a 100% of inert at 400 °C. Experimental condition details can be found in **Table 1** and the results of the adsorption-desorption cycles are showed in **Figure 1**.

Results

As it can be observed in Figure 1, multifunctional catalysts presented higher CO₂ mass gain in comparison to plain Ni-Fe catalyst (6 times lower than results from multifunctional catalysts). Adsorption of CO₂ in water presence showed similar behavior for all samples, increasing the same percentage in mass. In the third sequential step (H₂O), multifunctional catalysts totally released the CO₂ stored, keeping similar values of mass gain than in Ni-Fe. After introducing CO₂ to the H₂O feeding (i.e., fourth step), the mass gain rose to values lower than in the previous CO₂+H₂O second step. Finally, during the last CO₂ step the values of mass gain returned to similar ones than in the first CO₂ adsorption step, but slightly higher than in step 1.

Conclusions

The inclusion of alkali and alkaline earth metals significantly improved the CO_2 adsorption capacity of multifunctional catalysts. CO_2 was totally removed in step 3rd as effect of temperature (400 °C). Water and CO_2 partially compete for the adsorption sites of the catalysts, as it can be observed in the reduction of the mass gain in the 4th step in comparison with the 2nd one. H₂O competes partially with CO_2 for the adsorption centers. CO_2 adsorption

Catalyst load	$20.0 \pm 0.1 \text{ mg}$
Total volumetric flow	100 mL (STP) /
CO_2 concentration (inlet flow)	40 %
H ₂ O concentration (inlet flow)	10 °%
H ₂ concentration (activation)	50 °%
Inert gas (dilutant)	N_2
Pressure	1 bar
Adsorption steps duration	30 min (each
	one)

Table 1. TGA analysis conditions

Acknowledgments

This work has been carried out with financing for grant PID2019-104866RB-I00 by MCIN/AEI /10.13039/501100011033. CREG research group (T43-20R) is being supported by Gobierno de Aragón (*Aragón, SPAIN*) through *European Social Fund* (FSE-FEDER). Also, V.D.M express his gratitude for the contract PRE2020-095679, and ASM for his contract BES-2017-082069.

capacity was recovered after removing the H₂O from the gas inlet.

REFERENCES

- ALTFELD, K., PINCHBECK, D. Reprint: gas for energy 03/2013: Admissible hydrogen concentrations in natural gas systems. ISSN 2192-158X. Available from: https://gerg.eu/g21/wpcontent/uploads/2019/10/HIPS_Final-Report.pdf
- [2]. BERMEJO-LÓPEZ, A., PEREDA-AYO, B., GONZÁLEZ-MARCOS, J.A. and GONZÁLEZ-VELASCO, Juan R., 2021. Alternate cycles of CO₂ storage and in situ hydrogenation to CH₄ on Ni-Na₂CO₃/Al₂O₃: influence of promoter addition and calcination temperature. *Sustainable Energy and Fuels.* 2021. Vol. 5, no. 4, pp. 1194–1210. DOI 10.1039/d0se01677b.
- [3]. RINCÓN, M., MERCADER, V.D., SANZ-MARTÍNEZ, A., DURÁN, P., FRANCÉS, E., HERGUIDO, J., PEÑA, J.A. CO₂ methanation in a Ni-Fe based catalyst fixed bed reactor enhanced by selective water adsorption with LTA zeolites (Sorption Enhanced Sabatier Reaction – SESaR). *Revista* "Jornada de Jóvenes Investigadores del I3A", vol. 9 (2021), ISSN 2341-4790.
- [4]. SABATIER, P., and SENDERENS, J.B. New Synthesis of Methane. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences. 1902, 134, 514-516. Available from: doi:10.1039/CA9028200333.
- [5]. THEMA, M., BAUER, F., STERNER, M. Power-to-Gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews. 112 (2019) 775–787. Available from: doi.org/10.1016/j.rser.2019.06.030.

Figure 1. TGA mass gain for catalyst samples subjected to different atmospheres.