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Introduction

ACTIONS or run?
Affordances are the different action possibilities available in the environment depending
on the motor and sensing capabilities of the individual [3]. They relate the objects, the /
actions and the possible effects of that actions carried on the objects [10]. Based on this,
affordance prediction emerges as a powerful tool for autonomous and active agents AR S
where we need to understand the content of the scene: a cup is graspable, a road is
traversable and a chair is sitable but it can be also graspable depending on the context. OBJECTS
Uncertainty estimation helps to discard low-confidence results, reasons about similarities,
models noisy observations, analyses sources of uncertainty and serves as a basis for active
learning algorithms. Relationship: Positive m Relationship: Positive - Relationship: Negative
Relationship: Physical Obstacle Relationship: Socially Forbidden Relationship: Socially Forbidden
Methods
Deterministic model Bayesian model
We use a CNN architecture as an encoder to extract the semantic features from the object and the  Bayesian models predict the category and the degree of confidence of the prediction, providing a more
global scene and we use the object class ¢ of the ground-truth segmentation. Then, we build a Multi-  robust tool for robotic applications[5, 11, 4, 1, 12]. We compare two alternatives:
Layer Perceptron with Fully-Connected layers to fuse the vector activations. During training, we ¢ Monte-Carlo Dropout: approximates the posterior as the mean of the N forward passes during the test
incorporate Dropout layers before each FC to prevent overfitting. We compare three feature time with a random dropout of neurons, but we only train one single model
extractors: Resnet-50 [6], Resnet-18 and Mobilenet-v3 [7].  Deep Ensembles: requires training M different models with random initialisation of their weights.
B Although we increase the training cost linearly, it works better when the posterior distribution does not
. \ N ) follow a Bernoulli distribution.
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Feature extractor Num ) Dropout . . ~ 1 M
RV~ The final prediction is the mean of the samples Pm = 77 Zm:l DPm,
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S \ * Aleatoric uncertainty: it is associated with the noise inherent in the observations (motion noise, distant
FemBLIM-_,[._.,.....L}-.:.i _l hi 11 | -,_,l_.,f__fl?:__‘. S objects, boundaries) and it cannot be reduced by collecting more data [9].
e oty R ‘ - * Epistemic uncertainty: related to the model knowledge, we reduce it by increasing the dataset [9].
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Figure 1: Architecture of our model. The CNN encoder extracts the semantic information from the object and the global scene, which are combined with a — 7\ 1
the object-class m=

M
1 . ~
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Dataset Metrics

We compute the mean accuracy of the predictions for the mAcc—l - TP + TN

deterministic experiment CLuTP+FP+TN +FP

We conduct our experiments in the ADE-Affordances dataset [2], composed of 44K objects, which
was built on top of the ADE20K scenes [13], a popular semantic segmentation dataset. It divides
the object-action relationships into 7 categories, including exceptions with social meaning: For the Bayesian experiments we report:

Positive T— | _ . _ * Brier Score (BS): it measures the accuracy of the model. A perfect
=Ty L Y | Relationship: Object Non-functional -
: -~ ‘ > Relationship: Dangerous
; S | Ourselves/Others

Object non-functional , o 32 o accurate model scores BS = 0, while a BS=1 means that the model
Physical obstacles .. . Relationship: Socially Awkward ‘ '
. ' i — P e m Relationship: Positive . . ] . .
Socially awkward — pelatonship Poste — - e m:_Neg — * Expected Calibration Error (ECE): it reports the calibration of the Lo
. . elationship: Negative ' Sonehip: Negetve . .
Socially forbidden model, expressed as the difference between the confidence of the ECE =) _ Ml lace(B1) — con f(By)
The action is dangerous ? prediction and its accuracy. =
Firmly negative

is completely inaccurate.

The evolution of the components of the covariance matrix: components in the trace reflect the
variance of that category, while components out of the trace show inter-relationship between
categories.

Figure 2: Examples of the ground truth annotations of the ADE-Affordances dataset

Results
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We surpass the baseline [2] over a wide margin : — weos
Feature extractors affect significantly the performance, so we select Mobilenet-v3 for the Bayesian experiments. T MeD-Rup
The higher generalization capability of Bayesian models increases the performance.+ Tt |
Deep-Ensembles exceeds Monte-Carlo Dropout [8] since they approximate better the posterior distribution, which does not follow ]
a Bernoulli distribution.
5. The mAcc, ECE and BS curves show that we need a minimum number of Bayesian models M = 20 to achieve a calibrated and
accurate model
6. The components of the covariance matrix also showed convergence with the number of models M to the analytical expression.
They also show how the model ‘doubts’ between challenging classes (see Minigolf example)
Aleatoric variance is significant in far and blue objects far away from the camera, where the motion is translated to the pixel noise
8. Epistemic uncertainty appeared in uncommon objects out of the data distribution
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Sit Run Grasp
Deterministic: Baseline 0.428 0.424 0.289
Deterministic: Mobilenet | 0.820 0.834  (0.861

Sit

Deterministic: Resnet-18 | 0.787  0.796  0.839
Deterministic: Resnet-50 | 0.819 0.835  0.859
- DE M =5 0.819 0.834 0.859
& DE M =10 0.820 0.834 0.859
DE M =25 0.821 0.836 0.859
DE M = 50 0.821 0.835 0.861
MC-D =d, 0.1 0.818 0.834 0.860
MC-D =d, 0.3 0.821 0.835 0.860
g MC-D =d, 0.5 0.778 0.780  0.798
(L)
_ o _ _ _ _ _ o Table 1: mAcc. for the ADE-éff.or.dance dataset. Comparative Figure 5: Evolution of the components of the covariance matrix and comparison between aleatoric and
Figure 4: Qualitative examples and variance maps. Lighter colours mean a high variance in that prediction. between Bayesian and deterministic models

epistemic uncertainty
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