Artificial Neural Networks In The Prediction Of Atheroma Plaque Vulnerability

Ricardo Caballero¹, Miguel Ángel Martĺnez¹, Estefanía Peña^{1,2} ¹Applied Mechanics and Bioengineering (AMB), Aragón Institute of Engineering Research (I3A) ²Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BNN)

Introduction

Atherosclerosis is the accumulation of foam cells due to an excess of lowdensity-lipoproteins going across the endothelium.

The greatest risk of atherosclerosis occurs when the atheroma plaque is vulnerable.

If an atheroma plaque breaks, it can trigger either a myocardial infarction or stroke.

Materials and Methods

Model

- An idealized finite element model is developed from **IVUS images**^[1]
- Different material properties were assigned to each part of the model

Statistical Analysis

statistical analysis performed to determine which variables best explained the model and have a better criterion to select the inputs of the ANN

Candidate Variables					
$oldsymbol{arepsilon}_1$	ϵ_2	\mathcal{E}_{core}			
ε_{cap}	\mathcal{E}_{theta}	SR (%)			

Artificial Neural Network

Validation

Real Geometries				
Geometry	e_{cap}			
#1	65 μ m			
#2	250 μ m			
#3	480 μ m			

Results

Statistical Analysis

Descriptive analysis

Multivariate regression analysis

	Coef	P-value
Constant	2540	$< 10^{-3}$
SR (%)	-53.62	$< 10^{-3}$
$\epsilon_{core-cuad}$	-2978	$< 10^{-3}$
ε _{cap-cuad}	4109	$< 10^{-3}$
R-squared	92.	80 %

Artificial Neural Network

	Prediction			ction Real		
Geom	Ecore (kPa)	Eplaque (kPa)	Max. Principal Stress (kPa)	Ecore (kPa)	Eplaque (kPa)	Max. Principal Stress (kPa)
Α	4.54	1080.17	296.20	11.1	601	286.79
В	3.42	659.69	142.85	11.1	601	143.47
С	0.685	587.90	96.86	11.1	601	96.02
D	19.8	1200	87.7	11.1	600	81.4

Conclusions

- Acceptable errors in the estimation of Young Modulus do not affect vulnerability prediction
- · It is possible to develop an ANN to predict mechanical properties of atherosclerotic coronary artery
- . A future improvement of this work could be to rely on a higher number of IVUS, developing 3D geometries and including an anisotropic constitutive model of the material

References

[1] LE FLOC'H, S., OHAYON, J., TRACQUI, P., FINET, G., GHARIB, A.M., MAURICE, R.L., CLOUTIER, G. and PETTIGREW, R.I. Vulnerable Atherosclerotic Plaque Elasticity Reconstruction Based on a Segmentation-Driven Optimization Procedure Using Strain Measurements: Theoretical Framework. *IEE Trans Med Imaging*. 2009, 28(7), 1126-37. Available from: doi: 10.1109/TMI.2009.2012852.

comparative study of material models. 6, s.l.: Journal of Elasticity, 61(1):1-48, 2000.

