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MATERIALS AND METHODS 

CONCLUSIONS

 Laser refractive surgeries are widely used in correction of vision defects

such as myopia and astigmatism.

 Photorefractive Keratectomy (PRK) consists of reshaping the anterior

corneal surface with a laser, by following an ablation profile [2], in order to

achieve the spectacle independence (desired diopters correction).

 The removal of the ablation tissue affects the biomechanics of the cornea,

causing deformations and stresses on the tissue, due to the action of the

intraocular pressure (IOP) inside the eye cavity.

 In this work, a FE model of the cornea has been developed to address the

influence of geometrical, physiological and material parameters on the final

outcome of PRK surgery simulation.

RESULTS

Material Model

Anisotropic Holzapfel-Gasser-Odgen term [1]
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+ Volumetric term 
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kip: in-plane dispersion ∈ [0.1,0.5]
kop: out-of-plane dispersion ∈ [ Τ1 3 , 0.5]
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 Encastre boundary condition at limbus’

 Zero-pressure algorithm

C10 [kPa] k1 [kPa] k2 [-] D [kPa-1]

30 20 400 0,0003636

Statistical analysis 

25 full factorial design 

C10 [kPa] k1 [kPa] k2 [-] IOP [mmHg] Thickness [μm]

Min 15 10 200 13 490

Max 45 30 600 18 550

ANOVA statistical analysis 

32 simulations to be analyzed 

 The constant k2 turned out to be the most influential

factor:

o highly non-linear contribution of the anisotropic

component of the material.

o need of incorporating the collagen fibers when

modeling the corneal tissue [2].

 High influence of C10 (isotropic contribution) and k1

(fibers’ stiffness).

 Lower effect of the IOP and the corneal thickness with

respect to the other parameters.

 Also the interaction among the parameters was taken

into account.

Pearson diagram

 In general, the material constants and their interactions have shown the major influence

in determining the behavior of the corneal model.

 It is of major importance to set the proper material constants in order to perform a

reliable PRK simulation, having as final goal the post-surgical optical quality of the

patient.

 To achieve this goal, post-surgery mechanical deformations cannot be neglected.

PRK Surgery Simulation
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Simulations’ outcomes considered:

 diopters corrected

 apex displacement of anterior corneal 

surface 
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− 1) for i=4,6 where

ҧI1
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