ECG-Based Unsupervised Clustering in Coronary Artery Disease Associates with Ventricular Arrhythmia

Autores/as

  • Josseline Madrid BSICOS
  • Julia Ramírez Instituto de Investigación en Ingeniería de Aragón (I3A) https://orcid.org/0000-0003-4130-5866
  • Ana Mincholé Instituto de Investigación en Ingeniería de Aragón (I3A)

DOI:

https://doi.org/10.26754/jjii3a.20239034

Resumen

Coronary Artery Disease (CAD) is a leading cause of life-threatening ventricular arrhythmias (LTVAs). This study aimed to identify distinct clusters of CAD individuals based on QRS morphology using a 3-nearest neighbors clustering algorithm. Cluster 1, characterized by the lowest QRS amplitudes and widest QRS complexes, was strongly associated with LTVA risk.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2023-07-07

Cómo citar

Madrid, J., Ramírez, J., & Mincholé, A. (2023). ECG-Based Unsupervised Clustering in Coronary Artery Disease Associates with Ventricular Arrhythmia. Jornada De Jóvenes Investigadores Del I3A, 11. https://doi.org/10.26754/jjii3a.20239034