ECG-Based Unsupervised Clustering in Coronary Artery Disease Associates with Ventricular Arrhythmia

Autores/as

  • Josseline Madrid BSICOS
  • Julia Ramírez Instituto de Investigación en Ingeniería de Aragón (I3A) https://orcid.org/0000-0003-4130-5866
  • Ana Mincholé Instituto de Investigación en Ingeniería de Aragón (I3A)

DOI:

https://doi.org/10.26754/jjii3a.20239034

Resumen

Coronary Artery Disease (CAD) is a leading cause of life-threatening ventricular arrhythmias (LTVAs). This study aimed to identify distinct clusters of CAD individuals based on QRS morphology using a 3-nearest neighbors clustering algorithm. Cluster 1, characterized by the lowest QRS amplitudes and widest QRS complexes, was strongly associated with LTVA risk.

Mostras las descargas

Descargas

Publicado

2023-07-07

Cómo citar

Madrid, J., Ramírez, J., & Mincholé, A. (2023). ECG-Based Unsupervised Clustering in Coronary Artery Disease Associates with Ventricular Arrhythmia. Jornada De Jóvenes Investigadores Del I3A, 11. https://doi.org/10.26754/jjii3a.20239034