XII JORNADA DE JÓVENES INVESTIGADORES/AS DEL 13A

D: Residual

 d_{cs}^2/d_0^2

=0.3966

<u>**D**:</u> d_{cs}^2/d_0^2

=0.3639

Evaporation of Suspended Heavy Oil/1-Pentanol Droplets in Flame-like Conditions

T. Poonawala*, M. Asrardel, Á. Muelas, J. Ballester

Laboratory of Fluids Engineering and Energy (LIFEn) - Engineering Research Institute of Aragon (I3A), University of Zaragoza, Spain

*Email: tpoonawala@unizar.es

ABSTRACT

- A suspended droplet facility (SDF) is developed to reproduce flame-like conditions for studying evaporation/combustion characteristics of isolated droplets
- Experimental-model validation tests are conducted with 1-pentanol droplets to characterize the repeatability and reliability of this facility
- Evaporation characteristics are obtained for ≈500 μm droplets of HFO/1-pentanol blends with 1-pentanol varying from 0—50% (by wt.) in terms of droplet vaporization curves, micro-explosion intensity and cenosphere size

SUSPENDED DROPLET FACILITY (SDF)

- Feasible test droplet size: ϕ 350 1200 μ m
- Droplet ambient conditions: Cold conditions with Air shield: $325 \pm 1 \text{ K}$ Hot evaporating conditions: 1336 K ± 50 K at
- 1 atm with variable $\%O_2 = 0 21\%$ by. vol. Minimum effects of natural and forced convection at
- droplet location, as visible from the spherical envelope of diffusion flame for 1-pentanol droplet at 10% O₂ coflow
- Estimated Reynolds number for a 500 µm droplet is $\mathcal{O}(0.5)$

(b)

(a) Envelope flame (b) Supended droplet and (c) MATLAB® post-processed image of 1-pentanol at 10% O2 coflow

FUELS STUDIED AND DROPLET SIZES

(a)

- Five HFO/1-pentanol blends are considered with 10 experimental repetitions in each group
- HFO representative for difficult-to-burn liquid fuels like residual, pyrolysis, slurry oils, etc.
- 1-pentanol base volatile fuel for blending to improve evaporation and combustion characteristics

Blend Acronym	HFO [%wt.]	1-Pentanol [%wt.]	$\overline{d_0}$ [μ m]	σ _{d0} [μm]	RSD , $\sigma_{d_0}/\overline{d_0}$ [%]
HFO100	100	_	515	53	10.29
HFO95-P5	95	5	535	41	7.66
HFO75-P25	75	25	497	32	6.44
HFO50-P50	50	50	523	40	7.65
P100	-	100	535	22	4.11

VALIDATION TESTS WITH 1-PENTANOL

- Experimentally obtained normalized d²-t curves are compared with: [9]: Model based on classical theory of droplet vaporization (ref: Muelas et. al, Combust Flame 217 (2020) 38-47)
 - [7]: Classical model with radiative heat absorption & fiber heat conduction (ref: Mohamad et. al, poster no. 436043, 11th ECM 2023)
- Very low experimental RSD for k = 1.10%
- Quite low deviation in k_{exp} from model predictions, $\sim 10\%$ without any significant departure in the trends

• 581.4 | 0.4034 558.2 | 0.4124 Model[7] -534 | 0.4363 $\overline{d_{0_{exn}}} = 535.4 \pm 23.17 \mu m$ $\overline{k_{exp}} = 0.4077 \pm 0.0045 mm^2/s$ t/d_0^2 [s/mm²]

EVAPORATION CHARACTERISTICS OF HFO/1-PENTANOL BLENDS

B1: 1st puffing

HFO100

A: Droplet

HFO95-P5

As 1-pentanol content increases

viscous hollow shell (C)

 d^2/d_0^2 [-]

 d^2/d_0^2

content

 $[I \le 1.2]$

 t/d_0^2 [s/mm²]

explosions at droplet boundary, *I*<2

B2: A typical puffing event, *I*≤1.2, Vapor

nucleation growth at droplet boundary

followed by rupture

B2: Weak micro-explosion in **B3:** Strong micro-explosion due **B4:** After B3, evaporation $\underline{\mathbf{D}}$: d_{cs}^2/d_0^2 parent + ejected child droplet, *I*<2, to vapor superheat in thick outer continues like HFO100 but with violent puffing shell, *l≈2*

B1: Strong micro-explosions exhibited (*I*≈2.5) only during the initial period after t_i , the ruptured droplet is deformed but regains sphericity after every micro-explosion

B2: Evaporation progresses with the droplet undergoing rapid contraction and expansion, consequently showing multiple weak micro-explosions at droplet boundary or due to vapor nucleation at droplet core and violent puffing • Times are normalized as t/d_0^2 [s/mm²] (highlighted in yellow below each image)

B3: Typical weak micro-explosion, *I*<2,

Nucleated vapor superheats due to thick

outer shell and ruptures

B3: Typical strong micro-explosion, *I*≈2, rupture

shows multiple fragmentation

QUANTITATIVE ANALYSIS OF 1-PENTANOL BLENDING ON EVAPORATION OF HFO Micro-explosion intensity & its classification

Scale bar refers to 500 μm

- $I=d_e^2/d_v^2$, d_e and d_v are peak and valley droplet
- Puffing regime peaks at intermediate blend ratios

 t/d_0^2 [s/mm²]

 No clear trend for weak micro-explosions • Strong micro-explosions increase with 1-pentanol

For I > 2, $f_{I_{HFO_{50-P_{50}}}} \approx 4 \times f_{I_{HFO_{100}}}$

Normalized Time Metrics • t_i – time elapsed for first onset of puffing since test

Note: The uncertainty bars correspond to two times the standard deviation $(\pm \sigma)$.

Normalized Cenosphere Size Ratio d_{cs} – equivalent diameter of the residual cenosphere formed at the end of evaporation

CONCLUSIONS

 $[2 < I \le 1.2]$

- The developed SDF allows evaporation studies for isolated droplets at flame-like high temperature conditions with minimum influence of external effects
- Validation tests with 1-pentanol confirms the repeatability and precise control of these conditions in every test
- Increased puffing and strong micro-explosions regimes are observed in HFO when 1-pentanol blending ratio is 25-50%
- For 25% and 50% 1-pentanol blended HFO droplets, the normalized evaporation time reduces by 8.1% and 25%, while the mean cenosphere area reduces by 13.1% and 42.6%, respectively

FUTURE WORK

Investigate HFO/1-pentanol blends for isolated droplet combustion tests up to 21% O_2 at these flame-like conditions

Acknowledgements