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Atherosclerosis plaque rupture is one of the major causes of death worldwide.
Therefore, the mechanical characterization of plaque tissues could estimate their
vulnerability. This work presents a theoretical methodology to obtain the plaque
tissues’ hyperelastic behavior and its unpressurized geometry from IVUS images.

Coronary arteries were simulated
using finite element models with
real patient geometries. IVUS
data were mimicked by adding a
20dB signal-to-noise ratio over
the strain fields.

Image segmentation was
performed through a
watershed process over
the representation of the
strain variable |𝛻𝜀𝑟𝑟

𝑠𝑖𝑚| [1].
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During each iteration, the optimization algorithm
selected the material parameters and generated a
finite element model. Then, a Pull-Back algorithm
estimated the unpressurized geometry [2]. Finally,
the resulting radial strain between 110-115mmHg
was compared with the IVUS strains.
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is• Fibrotic tissue was characterized by a
hyperelastic behavior described by
Gasser’s equation [3].

• Behavior curves (σ-λ) were analyzed for
the fibrotic tissues of five different
geometries and four different materials.

• After the optimization, zero-pressure
geometry of the plaque was recovered.
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• A novel methodology was developed to characterize the
hyperelastic properties of the plaque tissues. It also estimated
the unpressurized geometry of the plaque.

• The methodology obtained promising results with real patient
geometries and different fibrotic tissue behaviors.

• The methodology could provide an estimation of the stress on
the arterial wall, giving an important tool for analyzing the
mechanical response.


