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FOM

𝑼𝑖𝑗
𝑛 =

ℎ𝑖𝑗
𝑛

𝑞𝑥 𝑖𝑗
𝑛

𝑞𝑦 𝑖𝑗

𝑛

Time step satisfying 
the CFL condition

Cell sizes in the 𝑥-
and 𝑦-directions

Number of volume 
cells in the 𝑥- and 
𝑦-directions

Cell edges contributions. 
For more info, see [2].
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Godunov method with Roe numerical fluxes.

ℎ(𝑥, 𝑦, 0) = ቊ
0.75 𝑚, 𝑖𝑓 0 𝑚 ≤ 𝑥 < 15.5 𝑚, ∀𝑦
0 𝑚, 𝑖𝑓 15.5 𝑚 ≤ 𝑥 ≤ 38 𝑚, ∀𝑦

𝑞𝑥 𝑥, 𝑦, 0 = 𝑞𝑦 𝑥, 𝑦, 0 = 0 Τ𝑚2 𝑠 , ∀𝑥, 𝑦

Wall and free boundary conditions.

Test case: geometry and initial conditions

ABSTRACT The numerical resolution of shallow water equations (SWE) is required in many environmental problems involving free surface flows. The upwind augmented Roe’s method [1] is
widely used due to the robust and stable solutions it offers in realistic scenarios if properly corrected to deal with entropy fix and wet–dry fronts. On the other hand, reduced-order models
(ROMs) are known to achieve more efficiency than the full-order models (FOMs) in terms of computational cost without losing accuracy. In this work, we analyse the properties and
performance of a proper orthogonal decomposition (POD) based ROMs for this type of flows.

2D SWE
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𝐼𝑥 × 𝐼𝑦 100 × 4 200 × 4 400 × 4 600 × 4

𝜏𝐶𝑃𝑈
𝐹𝑂𝑀(s) 1.87 6.61 25.71 59.06

𝜏𝐶𝑃𝑈
𝑅𝑂𝑀(s) 3.06 ∙ 10−2 3.06 ∙ 10−2 3.06 ∙ 10−2 3.06 ∙ 10−2

Speed-up 𝟔𝟎. 𝟗𝟖 𝟓𝟒. 𝟖𝟗 𝟓𝟒. 𝟏𝟒 𝟓𝟒. 𝟑𝟎

Table. CPU times required by different mesh refinements and the corresponding 
speed-ups, defined as 𝜏𝐶𝑃𝑈

𝐹𝑂𝑀/𝜏𝐶𝑃𝑈
𝑅𝑂𝑀.

Numerical corrections to ensure a robust FOM:
• Entropy fix
• Wet-dry treatment
• Positive water depths
For more info, see [2].

ROM

𝑼𝑘
𝑛 =

ℎ𝑘
𝑛

ො𝑞𝑥 𝑘
𝑛

ො𝑞𝑦 𝑘

𝑛

Matrices precomputed 
by applying the POD to 
the training snapshots. 
For more info, see [3].

Number of 
POD modes.

𝑼𝑘
𝑛+1 = 𝑼𝑘

𝑛 +
∆𝑡

∆𝑥∆𝑦
𝑀𝑼𝑘

𝑛 + ∆𝑡𝑁, 𝑘 = 1,… ,𝑀𝑃𝑂𝐷

Figure 3. ROM solution of ℎ at different times with 𝑀𝑃𝑂𝐷 = 5.

Final ROM solution

Galerkin method: 𝑼𝑖𝑗
𝑛 ≈ 

𝑘=1

𝑀𝑃𝑂𝐷

𝑼𝑘
𝑛𝝓𝑖𝑗𝑘 ,

where 𝝓𝑖𝑗𝑘 = ϕℎ 𝑖𝑗𝑘 , ϕ𝑞𝑥 𝑖𝑗𝑘
, ϕ𝑞𝑦 𝑖𝑗𝑘

𝑇

are the 

functions of the POD basis.

CONCLUSIONS The ROM can accurately (Fig. 2 & 3) and more efficiently
(Tab.) reproduce realistic problems than the FOM, including the numerical
corrections only in the training snapshots, but not in the resolution.

Figure 2. FOM solution of ℎ at different times with 𝐼𝑥 = 100, 𝐼𝑦 = 4.

FOM solution: training snapshots

a) 𝑡 = 3 𝑠 b) 𝑡 = 5 𝑠

d) 𝑡 = 20 𝑠c) 𝑡 = 10 𝑠

a) 𝑡 = 3 𝑠 b) 𝑡 = 5 𝑠

d) 𝑡 = 20 𝑠c) 𝑡 = 10 𝑠

Inverse Galerkin method

Number of 
time steps

𝑦 𝑥

𝑧
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