SST-Sal: A Spherical Spatio-Temporal Approach for Saliency Prediction in 360º Videos

Authors

  • Edurne Bernal Graphics and Imaging Lab
  • Daniel Martin
  • Diego Gutierrez
  • Belen Masia

DOI:

https://doi.org/10.26754/jjii3a.20227008

Abstract

We present a deep learning approach to visual attention prediction in 360º videos. We resort to recurrent neural networks to model the inherent spatio-temporal features of visual behavior, while tailoring our model to the particularities of 360º content. Our model outperforms previous state-of-the-art works by a large margin.

Downloads

Download data is not yet available.

Published

2022-07-18

How to Cite

Bernal, E., Martin, D., Gutierrez, D., & Masia, B. (2022). SST-Sal: A Spherical Spatio-Temporal Approach for Saliency Prediction in 360º Videos. Jornada De Jóvenes Investigadores Del I3A, 10. https://doi.org/10.26754/jjii3a.20227008

Issue

Section

Artículos (Tecnologías de la Información y las Comunicaciones)