Saliency Prediction in 360º Videos with Transformers
DOI:
https://doi.org/10.26754/jjii3a.20239430Abstract
We present a model for saliency prediction in 360º videos based on the Transformer architecture. Our model leverages the global attention mechanism in order to represent the temporal dependencies that drive human attention. We compare our model with a current state-of-the-art model and outperform it for all metrics measured.
Downloads
Download data is not yet available.
Downloads
Published
2023-07-07
How to Cite
Vallejo Domínguez, M. (2023). Saliency Prediction in 360º Videos with Transformers. Jornada De Jóvenes Investigadores Del I3A, 11. https://doi.org/10.26754/jjii3a.20239430
Issue
Section
Artículos (Tecnologías de la Información y las Comunicaciones)
License
Copyright (c) 2023 Mateo Vallejo Domínguez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.