Climate change impacts on maize and dry bean yields of smallholder farmers in Honduras

Autores/as

  • Carlos G.H. Diaz-Ambrona
  • Ruben Gigena
  • Carlos Onan Mendoza

DOI:

https://doi.org/10.26754/ojs_ried/ijds.43

Palabras clave:

América central, Modelo de simulación de cultivo, CropSyst, Seguridad, seguridad alimentaria, subsistencia, subtropical

Resumen

La rotación maíz-frijol es la fuente de alimentos de los pequeños productores de Honduras. Se ha determinado el impacto del cambio climático (comparado 2070-2099 con 1961-1990) mediante un modelo de simulación de la rotación en localidades de Honduras de distintas zonas climáticas y altitudes. La baja productividad unida a las incertidumbres sobre el clima futuro generan un elevado riesgo sobre la seguridad alimentaria. El modelo de simulación de sistemas de cultivo CropSyst se ha calibrado y validado con datos de campo del Zamorano, después se ha aplicado al clima base y a los escenarios futuros de varias simulaciones de GCMs y escenarios de emisión, aplicando el generador de datos diarios ClimGen. Los resultados indican una gran incertidumbre, pero en general una reducción del rendimiento del 0% al 22% en las zonas bajas, más adecuadas para el cultivo y un aumento en las zonas más frías, en zonas montañosas donde la agricultura debe evitar la erosión mediante la aplicación de técnicas de conservación del suelo. Futuros estudios son necesarios para investigar sobre como reducir el impacto y buscar estrategias de adaptación en las prácticas agrícolas.


CITAR COMO:
Diaz-Ambrona, C., Gigena, R., Mendoza, C. (2013). Climate change impacts on maize and dry bean yields of smallholder farmers in Honduras. Iberoamerican Journal of Development Studies, 2 (1): 4-22

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AUHING JI (1989). Evaluation of different doses and times from application of nitrogen, and methods of positioning of phosphorus on the yield of the maize in Zamorano (Honduras). Escuela Agrícola Panamericana Zamorano, Tegucigalpa, Honduras (in Spanish, with abstract in English)

BARRETO HJ, HARTKAMP AD (1999). Analysis of Maize Production in Honduras: Linking Census Data to Environment Variables through Geographic Information Systems. NRG–GIS Series 99–02. Mexico DF, Mexico

BARROW E, HULME M, SEMENOV MA (1996). Effect of using different methods in the construction of climate change scenarios: examples from Europe. Climate Research 7:195–211

BATRES J (1988). Evaluation of the effect of dose of nitrogen using urea and ammonium sulphate on the yield of the maize in Zamorano. Escuela Agrícola Panamericana Zamorano, Tegucigalpa, Honduras (in Spanish, with abstract in English)

BELLOCCHI G, MAESTRINI C, FILA G, FONTANA F (2002). Assessment of the effects of climate change a case study in northern Italy. In: proceeding s of the VII ESA Congress, Cordoba, Spain

CASTELLVI F, STÖCKLE CO (2001). Comparing the performance of WGEN and ClimGen in the generation of temperature and solar radiation. Transactions of the ASAE 446:1683–1687

CASTRO RE (2003). Detailed characterization of soil in Zamorano. Escuela Agrícola Panamericana Zamorano, Tegucigalpa, Honduras (in Spanish, with abstract in English)

DÍAZ–AMBRONA CH, GIGENA R, MENDOZA CO (2004). Global Climate Change and Food Security for Small Farmers in Honduras. In: New directions for a diverse planet. Proceedings of the 4th International Crop Science Congress, Brisbane, Australia 941–942

DONATELLI M, TUBIELLO FN, PERUCH U, ROSENZWEIG C (2002). Impacts of climate change and elevated CO2 on sugar beet production in Northern and Central Italy. Italian Journal of Agronomy 6:133–142

FERNÁNDEZ JV (2003). Detailed characterization of soil in Zamorano for pasture management. Honduras. Escuela Agrícola Panamericana Zamorano, Tegucigalpa, Honduras (in Spanish, with abstract in English)

FAO (1995). Digital Soil Map of the World and Derived Soil Properties; Version 3.5. Landand Water Digital Media Series 1; Food and Agriculture Organization of the United Nations [FAO], Rome, Italy

FAO (2011). FAOSTAT: FAO Statistical Databases. Food and Agriculture Organization of the United Nations [FAO], Rome, Italy. http://www.fao.org, accessed 27 September 2011

FUENTES PA (1991). Determination of economic and technical optimal levels of density and fertilization within Hybrid Maize B–833 under the climatic conditions of the valley of Yeguare. Escuela Agrícola Panamericana Zamorano, Tegucigalpa, Honduras (in Spanish, with abstract in English)

GUEREÑA A, RUIZ–RAMOS M, DÍAZ–AMBRONA CH, CONDE JR, MÍNGUEZ MI (2001). Assessment of climate change and agriculture in Spain using climate models. Agronomy Journal 93:237–249

GUERRERO JH (1988). Study the yield potential of common bean (Phaseolus vulgaris L.) in Honduras. Escuela Agrícola Panamericana Zamorano, Tegucigalpa, Honduras (in Spanish, with abstract in English)

HARO MA (1998). Lime and nitrogen fertilization effect on yield and profit of common bean. Escuela Agrícola Panamericana Zamorano, Tegucigalpa, Honduras (in Spanish, with abstract in English)

HINTZE LH, RENKOWB M, SAIN G (2003). Variety characteristics and maize adoption in Honduras. Agricultural Economics 29:307–317

HULME M, WIGLEY TML, BARROW EM, RAPER SCB, CENTELLA A, SMITH S, CHIPANSHI A (2000). Using a climate scenario generator in vulnerability and adaptation assessments: MAGICC and SCENGEN Workbook. Climatic Research Unit, University of East Anglia, Norwich, UK

IGLESIAS A, ROSENZWEIG C, PEREIRA D (2000). Agricultural impacts of climate change in Spain: developing tools for a spatial analysis. Global Environmental Change– Human and Policy Dimensions 10:69–80

IPCC (2000). Emissions Scenarios. Prepared by N Nakicenovic and R Swart, Cambridge University Press, UK, 570. Available from Cambridge University Press, The Edinburgh Building Shaftesbury Road, Cambridge CB2 2RU, England http://www.ipcc.ch/ ipccreports/sres/emission accessed 22 October 2012

IPCC–TGCIA (1999). Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment. Version 1. Prepared by Carter; TR; M. Hulme; and M. Lal; Intergovernmental Panel on Climate Change; Task Group on Scenarios for Climate Impact Assessment, Bern, Switzerland

JANSEN HGP, PENDER J, DAMON A, SCHIPPER R (2006). Rural Development Policies and Sustainable Land Use in the Hillside Areas of Honduras: A Quantitative Livelihoods Approach. Research report 147, International Food Policy Research Institute, Washington, USA http://www.ifpri.org/sites/default/files/publications/ rr147.pdf accessed 22 October 2012

JONES PG, THORNTON PK (2000). MarkSim: Software to generate daily weather data for Latin America and Africa. Agronomy Journal 93:445–453

JONES PG, THORNTON PK (2003). The potential impacts of climate change on maize production in Africa and Latin America in 2055. Global Environmental Change 13:51–59

JOVANOVIC NZ, ANNANDALE JG, BENADE N, CAMPBELL GS 2003. CLIMGEN–UP: A user–friendly weather data generator. South African Journal of Plant and Soil 20:203–205

LOAGUE K, GREEN RE (1991). Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of Contamination Hydrology 7:51–73

MEARNS LO, EASTERLING W, HAYS C (2001). Comparison of agricultural impacts of climate change calculated from high and low resolution climate model scenarios. Part I: The uncertainty due to spatial scale. Climate Change 51:131–172

MEARNS LO, GIORGI F, MCDANIEL L, SHIELDS C (2003). Climate scenarios for the southeast U.S. based on GCM and regional model simulations. Climate Change 60:7–35

MÍNGUEZ MI, RUIZ–RAMOS M, DÍAZ–AMBRONA CH, QUEMADA M, SAU F (2007). First– order impacts on winter and summer crops assessed with various high–resolution climate models in the Iberian Peninsula. Climate Change 81:343–355

MONTEITH JL (1977). Climate and crop efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B 281:277–329

PARRY ML, ROSENZWEIG C, IGLESIAS A, FISCHER G, LIVERMORE M (1999). Climate change and world food security: A new assessment. Global Environmental Change 9:51–67

PARRY ML, ROSENZWEIG C, IGLESIAS A, FISCHER G, LIVERMORE M (2004). Effects of climate change on global food production under SRES emissions and socio– economic scenarios. Global Environmental Change 14:53–67

PAZ F, MATA JH (1999). Weather data from FHIA 1986–1998. Fundación Hondureña de Investigación Agrícola, La Lima, Honduras (in Spanish)

REILLY J (1996). Climate Change; global agriculture and regional vulberability, 237–266. In: Bazzaz F, Sombrock W. Eds. Global Climate Change and Agricultural Production. Wiley, Chichester, UK

ROBLETO EA (1988). Effect of the fertilization with calcium, phosphorus and molybdenum in the nitrogen fixation and yield common bean. Escuela Agrícola Panamericana Zamorano, Tegucigalpa, Honduras (in Spanish, with abstract in English)

RUBIO R (2002). The effect of nitrogen leaf fertilization on maize. Escuela Agrícola Panamericana Zamorano, Tegucigalpa, Honduras (in Spanish, with abstract in English)

RUIZ–RAMOS M, MÍNGUEZ M (2010). Evaluating uncertainty in climate change impacts on crop productivity in the Iberian Peninsula. Climate Research 44: 69–82

SCOTT MJ, VAIL LW, JAKSCH JA, STÖCKLE CO, KEMANIAN AR (2004). Water exchanges: tools to beat El Niño climate variability in irrigated agriculture. Journal of the American Water Management Association 40(1):15–31

SEMENOV MA, BROOKS RJ, BARROW EM, RICHARDSON CW (1998). Comparison of the WGEN and LARS–WG stochastic weather generators for diverse climates. Climate research 10:95–107

SRES (2000). Special Report on Emissions Scenarios: A special report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University

STÖCKLE CO, NELSON R (2001). Cropping Systems Simulation Model User’s Manual. Biological Systems Engineering Department; Washington State University. http:// www.bsyse.wsu.edu/CS_Suite, accessed 27 September 2011

STÖCKLE CO, CAMPBELL GS, NELSON R (1999). ClimGen manual. Biological Systems Engineering Department; Washington State University, Pullman, WA, USA

STÖCKLE CO, DONATELLI M, NELSON R (2003). CropSyst; a cropping systems simulation model. European Journal of Agronomy 18:289–307

STÖCKLE CO, NELSON R, DONATELLI M, CASTELLVI F (2001). ClimGen: a flexible weather generation program. In: Donatelli M (ed.). Proceedings of the 2nd International Symposium Modelling Cropping Systems, European Society of Agronomy, Florence, Italy 34–41

TANNER CB, SINCLAIR TR (1983). Efficient water use in crop production: research or re–search? In: Taylor H, Jordan WR, Sinclair TR (eds.). Limitations to efficient water use in crop production. American Society for Agronomy, Madison, WI, USA 1–27

TUBIELLO FN, DONATELLI M, ROSENZWEIG C, STÖCKLE CO (2000). Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. European Journal of Agronomy 13:179–189

VILLALOBOS F, ORGAZ F, TESTI L, FERERES E (1999). The use of synthetic weather data for strategy analysis in cropping system modelling. In: M. Donatelli (ed.). Proceedings of the International Symposium Modelling Cropping Systems. European Society for Agronomy, Lérida, Spain 269–270

VILLASECA I (2001). The effect of sowing density and nitrogen on maize yield in Zamora¬no (Honduras). Escuela Agrícola Panamericana Zamorano, Tegucigalpa, Honduras (in Spanish, with abstract in English)

WIGLEY TML (2003). MAGICC/SCENGEN 4.1: Technical Manual. UCAR–Climate and Global Dynamics Division, Boulder, Colorado. http://www.cgd.ucar.edu/cas/wigley/ magicc/index.html , accessed 27 September 2011

WIGLEY TML, SMITH SJ, PRATHER MJ (2002). Radiative forcing due to reactive gas emissions. Journal of Climate 15:2690–2696

Descargas

Publicado

05-05-2013

Cómo citar

Diaz-Ambrona, C. G., Gigena, R., & Mendoza, C. O. (2013). Climate change impacts on maize and dry bean yields of smallholder farmers in Honduras. Revista Iberoamericana De Estudios De Desarrollo = Iberoamerican Journal of Development Studies, 2(1), 4–22. https://doi.org/10.26754/ojs_ried/ijds.43

Número

Sección

Artículos