An Efficient Hardware Accelerator to Handle Compressed Filters and Avoid Useless Operations in CNNs

Authors

  • Adrián Alcolea Moreno Grupo de Arquitectura de Computadores de la Universidad de Zaragoza, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza
  • Javier Olivito Grupo de Arquitectura de Computadores de la Universidad de Zaragoza, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza
  • Javier Resano Grupo de Arquitectura de Computadores de la Universidad de Zaragoza, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza

DOI:

https://doi.org/10.26754/jji-i3a.201802800

Abstract

Due to sparsity, a significant percentage of the operations carried out in Convolutional Neural Networks (CNNs) contains a zero in at least one of their operands. Different approaches try to take advantage of sparsity in two different ways. On the one hand, sparse matrices can be easily compressed, saving space and memory bandwidth. On the other hand, multiplications with zero in their operands can be avoided.

We propose the implementation in an FPGA of an architecture for CNNs capable of taking advantage of both, sparsity and filter compression.

   

Downloads

Download data is not yet available.

Downloads

Published

2018-05-25

How to Cite

Alcolea Moreno, A., Olivito, J., & Resano, J. (2018). An Efficient Hardware Accelerator to Handle Compressed Filters and Avoid Useless Operations in CNNs. Jornada De Jóvenes Investigadores Del I3A, 6. https://doi.org/10.26754/jji-i3a.201802800

Issue

Section

Artículos (Tecnologías de la Información y las Comunicaciones)