Inteligencia artificial en el arte rupestre: límites, posibilidades y desafíos de una evolución incierta
DOI :
https://doi.org/10.26754/ojs_salduie/sald.2025212652Mots-clés :
arte prehistórico, machine learning, detección automática, modelos supervisados, procesamiento de imágenesRésumé
El reciente desarrollo de la inteligencia artificial (IA) ha planteado nuevas posibilidades para la documentación y el análisis del arte rupestre. Este artículo examina críticamente el potencial y los límites del uso de modelos abiertos de machine learning (ML) para la detección automática de motivos pictóricos. Tras revisar el estado de la cuestión y explicar los principios del ML aplicados a la arqueología, se evalúa empíricamente un modelo abierto (Roboflow 3.0 Object Detection) en cuatro paneles rupestres de la península ibérica. Los resultados muestran un rendimiento aceptable solo en contextos bien conservados, mientras que disminuye notablemente ante pigmentos desvaídos o soportes irregulares. Se concluye que el ML puede apoyar la investigación, pero no sustituir la interpretación arqueológica, y que su avance depende de repositorios públicos estandarizados y anotaciones expertas coherentes.
Téléchargements
Références
Bellat, M., Orellana, J. D., Tennie, C. y Scholten, T. (2025). Machine learning applications in archaeological practices: A review. ArXiv. 2501.03840v3. https://doi.org/10.48550/arXiv.2501.03840
Bevan, A. (2015). The data deluge. Antiquity 89(348): 1473-1484. https://doi.org/10.15184/aqy.2015.102 DOI: https://doi.org/10.15184/aqy.2015.102
Bonald, L., Mützenberg, D., Krempser, E. y Verhagen, P. (2024). Predicting rock art sites in the Pajeú watershed, Brazil. Digital Applications in Archaeology and Cultural Heritage 35. e00372. DOI: https://doi.org/10.1016/j.daach.2024.e00372
Bruno, F., Bruno, S., De Sensi, G., Luchi, M. L., Mancuso, S. y Muzzupappa, M. (2013). From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition. Journal of Cultural Heritage 11(1): 42-49. DOI: https://doi.org/10.1016/j.culher.2009.02.006
Bruseker, G., Carboni, N. y Guillem, A. (2017). Cultural heritage data management: The role of formal ontology and CIDOC CRM. En Vincent, M. L., López-Menchero Bendicho, V. M., Ioannides, M. y Levy, T. E. (eds.): Heritage and archaeology in the digital age: Acquisition, curation, and dissemination of spatial cultural heritage data (pp. 93-131). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-65370-9_6
Casillo, M., F. Colace, R. Gaeta, A. Lorusso y M. Pellegrino (2024). Artificial intelligence in archaeological site conservation: Trends, challenges, and future directions. Journal of Computer Applications in Archaeology 8(1): 224-241. https://doi.org/10.5334/jcaa.207 DOI: https://doi.org/10.5334/jcaa.207
Chen, Y., Mancini, M., Zhu, X. y Akata, Z. (2024). Semi-supervised and unsupervised deep visual learning: A survey. arXiv. 2208.11296v1. https://doi.org/10.48550/arXiv.2208.11296
Chollet, F. (2021). Deep learning with Python (2nd ed.). Manning, Shelter Island.
Cioni, D., Berlincioni, L., Becattini, F. y Del Bimbo, A. (2023). Diffusion based augmentation for captioning and retrieval in cultural heritage. arXiv. 2308.07151v1. https://doi.org/10.48550/arXiv.2308.07151 DOI: https://doi.org/10.1109/ICCVW60793.2023.00186
Consejería de Educación, Cultura y Deportes de Castilla-La Mancha. https://cultura.castillalamancha.es/
De Lara, H. (2025). Manifestaciones rupestres prehistóricas en el sur de Europa y el norte de África: el entorno del estrecho de Gibraltar [Tesis doctoral]. UNED, Madrid. https://e-spacio.uned.es/entities/publication/1115c451-df2c-4621-b2ce-9d32f1ed56fc
De Lara, H., Mas, M. y Solís, M. (2025). Chronocultural proposal for the Atlanterra Cave (Cadiz, Spain). Rock Art Research 42(2): 213-233.
https://rockartresearch.com/index.php/rock/article/view/686
Dell’unto, N., Landeschi, G., Apel, J. y Poggi, G. (2016), Experiencing ancient buildings from a 3D GIS perspective: A case drawn from the Swedish Pompeii project. Journal of Archaeological Method and Theory 23(1): 73-94. DOI: https://doi.org/10.1007/s10816-014-9226-7
Fiorucci, M., Khoroshiltseva, M., Pontil, M., Traviglia, A., Del Bue, A. y James, S. (2020). Machine learning for cultural heritage: A survey. Pattern Recognition Letters 133: 102-108. DOI: https://doi.org/10.1016/j.patrec.2020.02.017
Goodfellow, I., Bengio, Y. y Courville, A. (2016). Deep learning. MIT Press, Cambridge (MA).
Guo, C., Pleiss, G., Sun, Y. y Weinberger, K. Q. (2017). On calibration of modern neural networks. arXiv. 1706.04599v2. https://doi.org/10.48550/arXiv.1706.04599
Harth, A. (2024). The study of pigments in cultural heritage: A review using machine learning. Heritage 7(7): 3664-3695. https://doi.org/10.3390/heritage7070174 DOI: https://doi.org/10.3390/heritage7070174
He, K., Gkioxari, G., Dollár, P. y Girshick, R. (2017). Mask R-CNN. arXiv. 1703.06870v3. https://doi.org/10.48550/arXiv.1703.06870
Historic England (2017). Photogrammetric applications for cultural heritage. Historic England Publishing, Swindon.
Horn, C., Ivarsson, O., Lindhé, C., Potter, R., Ashely, G. y Ling, J. (2022). Artificial intelligence, 3D documentation, and rock art—Approaching and reflecting on the automation of identification and classification of rock art images. Journal of Archaeological Method and Theory 29: 188-213. https://doi.org/10.1007/s10816-021-09518-6 DOI: https://doi.org/10.1007/s10816-021-09518-6
Huo, D., Yang, S. y Hou, M. (2025). Using the improved YOLOv7-Seg model to segment symbols from rock art images. npj Heritage Science 13. 16. https://doi.org/10.1038/s40494-025-01620-2 DOI: https://doi.org/10.1038/s40494-025-01620-2
Jalandoni, A., Zhang, Y. y Zaidi, N. A. (2022). On the use of machine learning methods in rock art research with application to automatic painted rock art identification. Journal of Archaeological Science 144. 105629. https://dx.doi.org/10.1016/j.jas.2022.105629 DOI: https://doi.org/10.1016/j.jas.2022.105629
Kowlessar, J., Keal, J., Wesley, D., Moffat, I., Lawrence, D., Weson, A., Nayinggul, A. y Mimul Land Management Aboriginal Corporation (2021). Reconstructing rock art chronology with transfer learning: A case study from Arnhem Land, Australia. Australian Archaeology 87: 115-126. https://doi.org/10.1080/03122417.2021.1895481 DOI: https://doi.org/10.1080/03122417.2021.1895481
Lecun, Y., Bengio, Y. y Hinton, G. (2015). Deep learning. Nature 521(7553): 436-444. https://doi.org/10.1038/nature14539 DOI: https://doi.org/10.1038/nature14539
Liu, Y., Wang, Y. y Liu, C. (2023). A deep-learning method using auto-encoder and generative adversarial network for anomaly detection on ancient stone stele surfaces. arXiv. 2308.04426v1. https://doi.org/10.48550/arXiv.2308.04426
Museo de la Valltorta. https://museudelavalltorta.gva.es/es
Pan, S. J. y Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22(10): 1345-1359. https://doi.org/10.1109/TKDE.2009.191 DOI: https://doi.org/10.1109/TKDE.2009.191
Redmon, J., Divvala, S., Girshick R. y Farhadi, A. (2016). You only look once: Unified, real-time object detection. arXiv. 1506.02640v5. https://doi.org/10.1109/CVPR.2016.91 DOI: https://doi.org/10.1109/CVPR.2016.91
Roboflow Universe, 2024, RMR Computer Vision Model. https://universe.roboflow.com/manifestaciones-y-figuras-rupestres/rmr/model/1
Schmarje, L., Santarossa, M., Schröder, S. M. y Koch, R. (2020). A survey on semi-, self- and unsupervised learning for image classification. arXiv. 2002.08721v5. https://doi.org/10.48550/arXiv.2002.08721
Shorten, C. y Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data 6(1). 60. https://doi.org/10.1186/s40537-019-0197-0 DOI: https://doi.org/10.1186/s40537-019-0197-0
Sokolovska, A. (2024). Artificial intelligence and prospects for its use in the study of Upper Palaeolithic rock art. Vita Antiqua 15: 127-135. https://doi.org/10.1186/s40537-019-0197-0 DOI: https://doi.org/10.37098/VA-2024-15-127-135
Steels, L. y Wahle, B. (2020). Perceiving the focal point of a painting with AI: Case studies on works of Luc Tuymans. En Rocha, A., Steels, L. y van den Herik, J. (eds.): Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART), Vol. 2 (pp. 895-901). ScitePress, Setúbal. DOI: https://doi.org/10.5220/0009163108950901
Suhaimi, M. S., Zainuddin, K., Ghazali, M. D., Marzukhi, F., Samad, A. M. y Majid, Z. (2023). Comparison of one-stage and two-stage strategies of machine learning model for rock art object detection. En 2023 IEEE 13th International Conference on System Engineering and Technology (ICSET) (pp. 215-220). IEEE, Piscataway. DOI: https://doi.org/10.1109/ICSET59111.2023.10295089
Turner-jones, R. N., Tuxworth, G., Haubt, R. A. y Wallis, L. (2024). Digitising the deep past: Machine learning for rock art motif classification in an educational citizen science application. Journal on Computing and Cultural Heritage 17(4): 1-19. DOI: https://doi.org/10.1145/3665796
Veggi, M. (2025). State of the art on artificial intelligence resources for interaction media design in digital cultural heritage. arXiv. 2504.13894v1. https://doi.org/10.48550/arXiv.2504.13894
Wilkinson, M., Dumontier, M., Aalbersberg, I. et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3. 160018. https://doi.org/10.1038/sdata.2016.18 DOI: https://doi.org/10.1038/sdata.2016.18
Yang, X., Song, Z., King, I. y Xu, Z. (2021). A survey on deep semi-supervised learning. arXiv. 2103.00550v2. https://doi.org/10.48550/arXiv.2103.00550
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H. y He, Q. (2019). A comprehensive survey on transfer learning. arXiv. 1911.02685v3. https://doi.org/10.48550/arXiv.1911.02685
Téléchargements
Publiée
Numéro
Rubrique
Licence
(c) Copyright Salduie 2025

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
SALDUIE conserva los derechos patrimoniales (copyright) de los artículos publicadas, autorizando a usar, difundir, transmitir y exponer públicamente su contenido, siempre que se cite la autoría, la url y la revista, y no se use para fines comerciales. También se reserva el derecho de la reproducción de los artículos en copia impresa, formato de documento portátil (.pdf) o ediciones HTML de JoS. Los autores están de acuerdo con la licencia de uso utilizada por la revista, al igual que con las condiciones de autoarchivo y su política de acceso abierto.









