Próximo(s)

Inteligencia artificial en el arte rupestre: límites, posibilidades y desafíos de una evolución incierta

Autores/as

DOI:

https://doi.org/10.26754/ojs_salduie/sald.2025212652

Palabras clave:

arte prehistórico, machine learning, detección automática, modelos supervisados, procesamiento de imágenes

Resumen

El reciente desarrollo de la inteligencia artificial (IA) ha planteado nuevas posibilidades para la documentación y el análisis del arte rupestre. Este artículo examina críticamente el potencial y los límites del uso de modelos abiertos de machine learning (ML) para la detección automática de motivos pictóricos. Tras revisar el estado de la cuestión y explicar los principios del ML aplicados a la arqueología, se evalúa empíricamente un modelo abierto (Roboflow 3.0 Object Detection) en cuatro paneles rupestres de la península ibérica. Los resultados muestran un rendimiento aceptable solo en contextos bien conservados, mientras que disminuye notablemente ante pigmentos desvaídos o soportes irregulares. Se concluye que el ML puede apoyar la investigación, pero no sustituir la interpretación arqueológica, y que su avance depende de repositorios públicos estandarizados y anotaciones expertas coherentes.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Bellat, M., Orellana, J. D., Tennie, C. y Scholten, T. (2025). Machine learning applications in archaeological practices: A review. ArXiv. 2501.03840v3. https://doi.org/10.48550/arXiv.2501.03840

Bevan, A. (2015). The data deluge. Antiquity 89(348): 1473-1484. https://doi.org/10.15184/aqy.2015.102

Bonald, L., Mützenberg, D., Krempser, E. y Verhagen, P. (2024). Predicting rock art sites in the Pajeú watershed, Brazil. Digital Applications in Archaeology and Cultural Heritage 35. e00372.

Bruno, F., Bruno, S., De Sensi, G., Luchi, M. L., Mancuso, S. y Muzzupappa, M. (2013). From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition. Journal of Cultural Heritage 11(1): 42-49.

Bruseker, G., Carboni, N. y Guillem, A. (2017). Cultural heritage data management: The role of formal ontology and CIDOC CRM. En Vincent, M. L., López-Menchero Bendicho, V. M., Ioannides, M. y Levy, T. E. (eds.): Heritage and archaeology in the digital age: Acquisition, curation, and dissemination of spatial cultural heritage data (pp. 93-131). Springer, Cham.

Casillo, M., F. Colace, R. Gaeta, A. Lorusso y M. Pellegrino (2024). Artificial intelligence in archaeological site conservation: Trends, challenges, and future directions. Journal of Computer Applications in Archaeology 8(1): 224-241. https://doi.org/10.5334/jcaa.207

Chen, Y., Mancini, M., Zhu, X. y Akata, Z. (2024). Semi-supervised and unsupervised deep visual learning: A survey. arXiv. 2208.11296v1. https://doi.org/10.48550/arXiv.2208.11296

Chollet, F. (2021). Deep learning with Python (2nd ed.). Manning, Shelter Island.

Cioni, D., Berlincioni, L., Becattini, F. y Del Bimbo, A. (2023). Diffusion based augmentation for captioning and retrieval in cultural heritage. arXiv. 2308.07151v1. https://doi.org/10.48550/arXiv.2308.07151

Consejería de Educación, Cultura y Deportes de Castilla-La Mancha. https://cultura.castillalamancha.es/

De Lara, H. (2025). Manifestaciones rupestres prehistóricas en el sur de Europa y el norte de África: el entorno del estrecho de Gibraltar [Tesis doctoral]. UNED, Madrid. https://e-spacio.uned.es/entities/publication/1115c451-df2c-4621-b2ce-9d32f1ed56fc

De Lara, H., Mas, M. y Solís, M. (2025). Chronocultural proposal for the Atlanterra Cave (Cadiz, Spain). Rock Art Research 42(2): 213-233.

https://rockartresearch.com/index.php/rock/article/view/686

Dell’unto, N., Landeschi, G., Apel, J. y Poggi, G. (2016), Experiencing ancient buildings from a 3D GIS perspective: A case drawn from the Swedish Pompeii project. Journal of Archaeological Method and Theory 23(1): 73-94.

Fiorucci, M., Khoroshiltseva, M., Pontil, M., Traviglia, A., Del Bue, A. y James, S. (2020). Machine learning for cultural heritage: A survey. Pattern Recognition Letters 133: 102-108.

Goodfellow, I., Bengio, Y. y Courville, A. (2016). Deep learning. MIT Press, Cambridge (MA).

Guo, C., Pleiss, G., Sun, Y. y Weinberger, K. Q. (2017). On calibration of modern neural networks. arXiv. 1706.04599v2. https://doi.org/10.48550/arXiv.1706.04599

Harth, A. (2024). The study of pigments in cultural heritage: A review using machine learning. Heritage 7(7): 3664-3695. https://doi.org/10.3390/heritage7070174

He, K., Gkioxari, G., Dollár, P. y Girshick, R. (2017). Mask R-CNN. arXiv. 1703.06870v3. https://doi.org/10.48550/arXiv.1703.06870

Historic England (2017). Photogrammetric applications for cultural heritage. Historic England Publishing, Swindon.

Horn, C., Ivarsson, O., Lindhé, C., Potter, R., Ashely, G. y Ling, J. (2022). Artificial intelligence, 3D documentation, and rock art—Approaching and reflecting on the automation of identification and classification of rock art images. Journal of Archaeological Method and Theory 29: 188-213. https://doi.org/10.1007/s10816-021-09518-6

Huo, D., Yang, S. y Hou, M. (2025). Using the improved YOLOv7-Seg model to segment symbols from rock art images. npj Heritage Science 13. 16. https://doi.org/10.1038/s40494-025-01620-2

Jalandoni, A., Zhang, Y. y Zaidi, N. A. (2022). On the use of machine learning methods in rock art research with application to automatic painted rock art identification. Journal of Archaeological Science 144. 105629. https://dx.doi.org/10.1016/j.jas.2022.105629

Kowlessar, J., Keal, J., Wesley, D., Moffat, I., Lawrence, D., Weson, A., Nayinggul, A. y Mimul Land Management Aboriginal Corporation (2021). Reconstructing rock art chronology with transfer learning: A case study from Arnhem Land, Australia. Australian Archaeology 87: 115-126. https://doi.org/10.1080/03122417.2021.1895481

Lecun, Y., Bengio, Y. y Hinton, G. (2015). Deep learning. Nature 521(7553): 436-444. https://doi.org/10.1038/nature14539

Liu, Y., Wang, Y. y Liu, C. (2023). A deep-learning method using auto-encoder and generative adversarial network for anomaly detection on ancient stone stele surfaces. arXiv. 2308.04426v1. https://doi.org/10.48550/arXiv.2308.04426

Museo de la Valltorta. https://museudelavalltorta.gva.es/es

Pan, S. J. y Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22(10): 1345-1359. https://doi.org/10.1109/TKDE.2009.191

Redmon, J., Divvala, S., Girshick R. y Farhadi, A. (2016). You only look once: Unified, real-time object detection. arXiv. 1506.02640v5. https://doi.org/10.1109/CVPR.2016.91

Roboflow Universe, 2024, RMR Computer Vision Model. https://universe.roboflow.com/manifestaciones-y-figuras-rupestres/rmr/model/1

Schmarje, L., Santarossa, M., Schröder, S. M. y Koch, R. (2020). A survey on semi-, self- and unsupervised learning for image classification. arXiv. 2002.08721v5. https://doi.org/10.48550/arXiv.2002.08721

Shorten, C. y Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data 6(1). 60. https://doi.org/10.1186/s40537-019-0197-0

Sokolovska, A. (2024). Artificial intelligence and prospects for its use in the study of Upper Palaeolithic rock art. Vita Antiqua 15: 127-135. https://doi.org/10.1186/s40537-019-0197-0

Steels, L. y Wahle, B. (2020). Perceiving the focal point of a painting with AI: Case studies on works of Luc Tuymans. En Rocha, A., Steels, L. y van den Herik, J. (eds.): Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART), Vol. 2 (pp. 895-901). ScitePress, Setúbal.

Suhaimi, M. S., Zainuddin, K., Ghazali, M. D., Marzukhi, F., Samad, A. M. y Majid, Z. (2023). Comparison of one-stage and two-stage strategies of machine learning model for rock art object detection. En 2023 IEEE 13th International Conference on System Engineering and Technology (ICSET) (pp. 215-220). IEEE, Piscataway.

Turner-jones, R. N., Tuxworth, G., Haubt, R. A. y Wallis, L. (2024). Digitising the deep past: Machine learning for rock art motif classification in an educational citizen science application. Journal on Computing and Cultural Heritage 17(4): 1-19.

Veggi, M. (2025). State of the art on artificial intelligence resources for interaction media design in digital cultural heritage. arXiv. 2504.13894v1. https://doi.org/10.48550/arXiv.2504.13894

Wilkinson, M., Dumontier, M., Aalbersberg, I. et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3. 160018. https://doi.org/10.1038/sdata.2016.18

Yang, X., Song, Z., King, I. y Xu, Z. (2021). A survey on deep semi-supervised learning. arXiv. 2103.00550v2. https://doi.org/10.48550/arXiv.2103.00550

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H. y He, Q. (2019). A comprehensive survey on transfer learning. arXiv. 1911.02685v3. https://doi.org/10.48550/arXiv.1911.02685

Descargas

Publicado

12-01-2026

Cómo citar

«Inteligencia artificial en el arte rupestre: límites, posibilidades y desafíos de una evolución incierta» (2026) Salduie, 25(2), pp. 1–14. doi:10.26754/ojs_salduie/sald.2025212652.

Artículos similares

1-10 de 365

También puede Iniciar una búsqueda de similitud avanzada para este artículo.