Forthcoming

Artificial intelligence in rock art research: limits, possibilities, and challenges of an uncertain evolution

Authors

DOI:

https://doi.org/10.26754/ojs_salduie/sald.2025212652

Keywords:

prehistoric art, machine learning, automatic detection, supervised models, image processing

Abstract

The recent development of artificial intelligence (AI) has opened new possibilities for the documentation and analysis of rock art. This article critically examines the potential and the limits of using open machine learning (ML) models for the automatic detection of pictorial motifs. After reviewing the state of the art and outlining the principles of ML as applied to archaeology, we empirically evaluate an open model (Roboflow 3.0 Object Detection) on four rock art panels from the Iberian Peninsula. The results show acceptable performance only in well-preserved contexts, while accuracy decreases notably in the presence of faded pigments or irregular rock surfaces. We conclude that ML can support archaeological research but cannot replace expert interpretation, and that progress in this field depends on standardized public repositories and coherent expert annotations.

Downloads

Download data is not yet available.

References

Bellat, M., Orellana, J. D., Tennie, C. y Scholten, T. (2025). Machine learning applications in archaeological practices: A review. ArXiv. 2501.03840v3. https://doi.org/10.48550/arXiv.2501.03840

Bevan, A. (2015). The data deluge. Antiquity 89(348): 1473-1484. https://doi.org/10.15184/aqy.2015.102

Bonald, L., Mützenberg, D., Krempser, E. y Verhagen, P. (2024). Predicting rock art sites in the Pajeú watershed, Brazil. Digital Applications in Archaeology and Cultural Heritage 35. e00372.

Bruno, F., Bruno, S., De Sensi, G., Luchi, M. L., Mancuso, S. y Muzzupappa, M. (2013). From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition. Journal of Cultural Heritage 11(1): 42-49.

Bruseker, G., Carboni, N. y Guillem, A. (2017). Cultural heritage data management: The role of formal ontology and CIDOC CRM. En Vincent, M. L., López-Menchero Bendicho, V. M., Ioannides, M. y Levy, T. E. (eds.): Heritage and archaeology in the digital age: Acquisition, curation, and dissemination of spatial cultural heritage data (pp. 93-131). Springer, Cham.

Casillo, M., F. Colace, R. Gaeta, A. Lorusso y M. Pellegrino (2024). Artificial intelligence in archaeological site conservation: Trends, challenges, and future directions. Journal of Computer Applications in Archaeology 8(1): 224-241. https://doi.org/10.5334/jcaa.207

Chen, Y., Mancini, M., Zhu, X. y Akata, Z. (2024). Semi-supervised and unsupervised deep visual learning: A survey. arXiv. 2208.11296v1. https://doi.org/10.48550/arXiv.2208.11296

Chollet, F. (2021). Deep learning with Python (2nd ed.). Manning, Shelter Island.

Cioni, D., Berlincioni, L., Becattini, F. y Del Bimbo, A. (2023). Diffusion based augmentation for captioning and retrieval in cultural heritage. arXiv. 2308.07151v1. https://doi.org/10.48550/arXiv.2308.07151

Consejería de Educación, Cultura y Deportes de Castilla-La Mancha. https://cultura.castillalamancha.es/

De Lara, H. (2025). Manifestaciones rupestres prehistóricas en el sur de Europa y el norte de África: el entorno del estrecho de Gibraltar [Tesis doctoral]. UNED, Madrid. https://e-spacio.uned.es/entities/publication/1115c451-df2c-4621-b2ce-9d32f1ed56fc

De Lara, H., Mas, M. y Solís, M. (2025). Chronocultural proposal for the Atlanterra Cave (Cadiz, Spain). Rock Art Research 42(2): 213-233.

https://rockartresearch.com/index.php/rock/article/view/686

Dell’unto, N., Landeschi, G., Apel, J. y Poggi, G. (2016), Experiencing ancient buildings from a 3D GIS perspective: A case drawn from the Swedish Pompeii project. Journal of Archaeological Method and Theory 23(1): 73-94.

Fiorucci, M., Khoroshiltseva, M., Pontil, M., Traviglia, A., Del Bue, A. y James, S. (2020). Machine learning for cultural heritage: A survey. Pattern Recognition Letters 133: 102-108.

Goodfellow, I., Bengio, Y. y Courville, A. (2016). Deep learning. MIT Press, Cambridge (MA).

Guo, C., Pleiss, G., Sun, Y. y Weinberger, K. Q. (2017). On calibration of modern neural networks. arXiv. 1706.04599v2. https://doi.org/10.48550/arXiv.1706.04599

Harth, A. (2024). The study of pigments in cultural heritage: A review using machine learning. Heritage 7(7): 3664-3695. https://doi.org/10.3390/heritage7070174

He, K., Gkioxari, G., Dollár, P. y Girshick, R. (2017). Mask R-CNN. arXiv. 1703.06870v3. https://doi.org/10.48550/arXiv.1703.06870

Historic England (2017). Photogrammetric applications for cultural heritage. Historic England Publishing, Swindon.

Horn, C., Ivarsson, O., Lindhé, C., Potter, R., Ashely, G. y Ling, J. (2022). Artificial intelligence, 3D documentation, and rock art—Approaching and reflecting on the automation of identification and classification of rock art images. Journal of Archaeological Method and Theory 29: 188-213. https://doi.org/10.1007/s10816-021-09518-6

Huo, D., Yang, S. y Hou, M. (2025). Using the improved YOLOv7-Seg model to segment symbols from rock art images. npj Heritage Science 13. 16. https://doi.org/10.1038/s40494-025-01620-2

Jalandoni, A., Zhang, Y. y Zaidi, N. A. (2022). On the use of machine learning methods in rock art research with application to automatic painted rock art identification. Journal of Archaeological Science 144. 105629. https://dx.doi.org/10.1016/j.jas.2022.105629

Kowlessar, J., Keal, J., Wesley, D., Moffat, I., Lawrence, D., Weson, A., Nayinggul, A. y Mimul Land Management Aboriginal Corporation (2021). Reconstructing rock art chronology with transfer learning: A case study from Arnhem Land, Australia. Australian Archaeology 87: 115-126. https://doi.org/10.1080/03122417.2021.1895481

Lecun, Y., Bengio, Y. y Hinton, G. (2015). Deep learning. Nature 521(7553): 436-444. https://doi.org/10.1038/nature14539

Liu, Y., Wang, Y. y Liu, C. (2023). A deep-learning method using auto-encoder and generative adversarial network for anomaly detection on ancient stone stele surfaces. arXiv. 2308.04426v1. https://doi.org/10.48550/arXiv.2308.04426

Museo de la Valltorta. https://museudelavalltorta.gva.es/es

Pan, S. J. y Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22(10): 1345-1359. https://doi.org/10.1109/TKDE.2009.191

Redmon, J., Divvala, S., Girshick R. y Farhadi, A. (2016). You only look once: Unified, real-time object detection. arXiv. 1506.02640v5. https://doi.org/10.1109/CVPR.2016.91

Roboflow Universe, 2024, RMR Computer Vision Model. https://universe.roboflow.com/manifestaciones-y-figuras-rupestres/rmr/model/1

Schmarje, L., Santarossa, M., Schröder, S. M. y Koch, R. (2020). A survey on semi-, self- and unsupervised learning for image classification. arXiv. 2002.08721v5. https://doi.org/10.48550/arXiv.2002.08721

Shorten, C. y Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data 6(1). 60. https://doi.org/10.1186/s40537-019-0197-0

Sokolovska, A. (2024). Artificial intelligence and prospects for its use in the study of Upper Palaeolithic rock art. Vita Antiqua 15: 127-135. https://doi.org/10.1186/s40537-019-0197-0

Steels, L. y Wahle, B. (2020). Perceiving the focal point of a painting with AI: Case studies on works of Luc Tuymans. En Rocha, A., Steels, L. y van den Herik, J. (eds.): Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART), Vol. 2 (pp. 895-901). ScitePress, Setúbal.

Suhaimi, M. S., Zainuddin, K., Ghazali, M. D., Marzukhi, F., Samad, A. M. y Majid, Z. (2023). Comparison of one-stage and two-stage strategies of machine learning model for rock art object detection. En 2023 IEEE 13th International Conference on System Engineering and Technology (ICSET) (pp. 215-220). IEEE, Piscataway.

Turner-jones, R. N., Tuxworth, G., Haubt, R. A. y Wallis, L. (2024). Digitising the deep past: Machine learning for rock art motif classification in an educational citizen science application. Journal on Computing and Cultural Heritage 17(4): 1-19.

Veggi, M. (2025). State of the art on artificial intelligence resources for interaction media design in digital cultural heritage. arXiv. 2504.13894v1. https://doi.org/10.48550/arXiv.2504.13894

Wilkinson, M., Dumontier, M., Aalbersberg, I. et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3. 160018. https://doi.org/10.1038/sdata.2016.18

Yang, X., Song, Z., King, I. y Xu, Z. (2021). A survey on deep semi-supervised learning. arXiv. 2103.00550v2. https://doi.org/10.48550/arXiv.2103.00550

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H. y He, Q. (2019). A comprehensive survey on transfer learning. arXiv. 1911.02685v3. https://doi.org/10.48550/arXiv.1911.02685

Downloads

Published

2026-01-12

How to Cite

“Artificial intelligence in rock art research: limits, possibilities, and challenges of an uncertain evolution” (2026) Salduie, 25(2), pp. 1–14. doi:10.26754/ojs_salduie/sald.2025212652.

Similar Articles

1-10 of 91

You may also start an advanced similarity search for this article.