La ciudad no es un árbol estático: comprender las áreas urbanas a través de la óptica de los datos de comportamiento en tiempo real
DOI:
https://doi.org/10.26754/ojs_zarch/zarch.2022197407Palabras clave:
Comportamiento humano, Datos movilidad, Segregación, Salud públicaResumen
Las ciudades son el principal terreno sobre el que se desarrollan —y se desarrollarán— nuestra sociedad y cultura. Frente a la concepción tradicional de las ciudades como espacio físico, en torno a nuestros barrios, el uso reciente de grandes conjuntos de datos de movilidad ha permitido estudiar el comportamiento humano a escalas espaciales y temporales sin precedentes, más allá de nuestros espacios residenciales. Este artículo muestra cómo es posible utilizar estos conjuntos de datos para investigar el papel que desempeña el comportamiento humano en problemas urbanos tradicionales como la segregación, la salud pública o las epidemias. Además de medir o monitorizar estos problemas de forma exhaustiva, el análisis de estos grandes conjuntos de datos mediante técnicas de aprendizaje automático o detección de causalidad permite desvelar raíces conductuales detrás de esos problemas. Como resultado, solo incorporando datos de comportamiento en tiempo real podemos diseñar políticas o intervenciones más eficientes que contribuyan a mejorar estos problemas sociales críticos en nuestras áreas urbanas.
Descargas
Citas
Aleta, Alberto, David Martin-Corral, Ana Pastore y Piontti, Marco Ajelli, Maria Litvinova, Matteo Chinazzi, Natalie E. Dean et al. 2020. "Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19." Nature Human Behaviour 4, no. 9: 964-971.
Aleta, Alberto, David Martín-Corral, Michiel A. Bakker, Ana Pastore y Piontti, Marco Ajelli, Maria Litvinova, Matteo Chinazzi et al. 2022. "Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas." Proceedings of the National Academy of Sciences 119, no. 26: e2112182119.
Alexander, Christopher. 2017. A city is not a tree. Sustasis Press/Off The Common Books.
Berke, Alex, Ronan Doorley, Kent Larson, and Esteban Moro. 2022. "Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy." In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pp. 964-967.
Chetty, Raj, Nathaniel Hendren, Patrick Kline, Emmanuel Saez, and Nicholas Turner. 2014. "Is the United States still a land of opportunity? Recent trends in intergenerational mobility." American Economic Review 104, no. 5: 141-47.
Chetty, Raj, Nathaniel Hendren, and Lawrence F. Katz. 2016. "The effects of exposure to better neighborhoods on children: New evidence from the moving to opportunity experiment." American Economic Review 106, no. 4: 855-902.
Coston, Amanda, Neel Guha, Derek Ouyang, Lisa Lu, Alexandra Chouldechova, and Daniel E. Ho. 2021. “Leveraging administrative data for bias audits: Assessing disparate coverage with mobility data for COVID-19 policy.” In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency:173-184.
Cook, Cody. 2022. "Heterogeneous Preferences for Neighborhood Amenities: Evidence from GPS data." Available at SSRN 4212524.
Deng, Hengfang, Daniel P. Aldrich, Michael M. Danziger, Jianxi Gao, Nolan E. Phillips, Sean P. Cornelius, and Qi Ryan Wang. 2021. "High-resolution human mobility data reveal race and wealth disparities in disaster evacuation patterns." Humanities and Social Sciences Communications 8, no. 1: 1-8.
Dong, Xiaowen, Alfredo J. Morales, Eaman Jahani, Esteban Moro, Bruno Lepri, Burcin Bozkaya, Carlos Sarraute, Yaneer Bar-Yam, and Alex Pentland. 2020. "Segregated interactions in urban and online space." EPJ Data Science 9, no. 1: 20.
Fritz, Steffen, Linda See, Tyler Carlson, Mordechai Muki Haklay, Jessie L. Oliver, Dilek Fraisl, Rosy Mondardini et al. 2019. "Citizen science and the United Nations sustainable development goals." Nature Sustainability 2, no. 10: 922-930.
Garcia, David, Yonas Mitike Kassa, Angel Cuevas, Manuel Cebrian, Esteban Moro, Iyad Rahwan, and Ruben Cuevas. 2018. "Analyzing gender inequality through large-scale Facebook advertising data." Proceedings of the National Academy of Sciences 115, no. 27: 6958-6963.
Garcia-Bulle, Bernardo, Abigail L. Horn, Brooke M. Bell, Mohsen Bahrami, Burcin Bozkaya, Alex Pentland, Kayla de la Haye, and Esteban Moro. 2022. "You are where you eat: Effect of mobile food environments on fast food visits." medRxiv. https://doi.org/10.1101/2022.09.20.22280128
Gauvin, Laetitia, Michele Tizzoni, Simone Piaggesi, Andrew Young, Natalia Adler, Stefaan Verhulst, Leo Ferres, and Ciro Cattuto. 2020. "Gender gaps in urban mobility." Humanities and Social Sciences Communications 7, no. 1: 1-13.
Jean, Neal, Marshall Burke, Michael Xie, W. Matthew Davis, David B. Lobell, and Stefano Ermon. 2016. "Combining satellite imagery and machine learning to predict poverty." Science 353, no. 6301: 790-794.
Kahneman, Daniel. 2011. Thinking, fast and slow. Macmillan.
Kandt, Jens, Michael Batty. 2021. "Smart cities, big data and urban policy: Towards urban analytics for the long run. " Cities 109: 102992. https://doi.org/10.1016/j.cities.2020.102992
Kryvasheyeu, Yury, Haohui Chen, Nick Obradovich, Esteban Moro, Pascal Van Hentenryck, James Fowler, and Manuel Cebrian. 2016. "Rapid assessment of disaster damage using social media activity." Science advances 2, no. 3: e1500779.
Lazer, David, Alex Pentland, Lada Adamic, Sinan Aral, Albert-Laszlo Barabasi, Devon Brewer, Nicholas Christakis et al. 2009. "Social science. Computational social science." Science (New York, NY) 323, no. 5915: 721-723.
Llorente, Alejandro, Manuel Garcia-Herranz, Manuel Cebrian, and Esteban Moro. 2015. "Social media fingerprints of unemployment." PloS one 10, no. 5: e0128692.
Moro, Esteban, Dan Calacci, Xiaowen Dong, and Alex Pentland. 2021. "Mobility patterns are associated with experienced income segregation in large US cities." Nature communications 12, no. 1: 1-10.
Pappalardo, Luca, Filippo Simini, Salvatore Rinzivillo, Dino Pedreschi, Fosca Giannotti, and Albert-László Barabási. 2015. "Returners and explorers dichotomy in human mobility." Nature communications 6, no. 1: 1-8.
Salganik, Matthew J. 2019. Bit by bit: Social research in the digital age. Princeton University Press.
Schläpfer, Markus, Lei Dong, Kevin O’Keeffe, Paolo Santi, Michael Szell, Hadrien Salat, Samuel Anklesaria, Mohammad Vazifeh, Carlo Ratti, and Geoffrey B. West. 2021. "The universal visitation law of human mobility." Nature 593, no. 7860: 522-527.
Silm, Siiri, and Rein Ahas. 2014. "The temporal variation of ethnic segregation in a city: Evidence from a mobile phone use dataset." Social Science Research 47: 30-43.
Song, Chaoming, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. 2010. "Limits of predictability in human mobility." Science 327, no. 5968: 1018-1021.
Wang, Q., Phillips, N. E., Small, M. L., & Sampson, R. J. 2018. Urban mobility and neighborhood isolation in America’s 50 largest cities. Proceedings of the National Academy of Sciences 115, no. 30: 7735-7740.
Xu, Yang, Alexander Belyi, Paolo Santi, and Carlo Ratti. 2019. "Quantifying segregation in an integrated urban physical-social space." Journal of the Royal Society Interface 16, no. 160: 20190536.
Yabe, Takahiro, Bernardo Garcia Bulle Bueno, Xiaowen Dong, AlexSandy Pentland, and Esteban Moro. 2022. "Behavioral changes during the pandemic worsened income diversity of urban encounters." arXiv preprint arXiv:2207.06895.
Yanni Yang, Alex Pentland, and Esteban Moro. 2022. “Identifying latent activity behaviors and lifestyles using mobility data to
describe urban dynamics.” arXiv preprint arXiv: 2209.12095. https://doi.org/10.48550/arXiv.2209.12095
Zagheni, Emilio, and Ingmar Weber. 2015. “Demographic research with non-representative internet data.” International Journal of Manpower 36, no. 1: 13-25. https://doi.org/10.1108/IJM-12-2014-0261